cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320375 Number of parts in all partitions of n with largest multiplicity five.

Original entry on oeis.org

5, 0, 6, 6, 13, 18, 34, 35, 66, 82, 120, 154, 230, 286, 408, 514, 699, 886, 1189, 1485, 1949, 2441, 3136, 3906, 4980, 6159, 7757, 9555, 11908, 14600, 18062, 22000, 27028, 32804, 39996, 48327, 58614, 70489, 85036, 101876, 122284, 145943, 174419, 207354, 246804
Offset: 5

Views

Author

Alois P. Heinz, Oct 11 2018

Keywords

Crossrefs

Column k=5 of A213177.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, [1, 0], `if`(i<1, 0,
          add((l->l+[0, l[1]*j])(b(n-i*j, i-1, k)), j=0..min(n/i, k))))
        end:
    a:= n-> (k-> (b(n$2, k)-b(n$2, k-1))[2])(5):
    seq(a(n), n=5..50);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, {1, 0}, If[i < 1, {0, 0},        Sum[Function[l, {0, l[[1]] j} + l][b[n - i j, i - 1, k]], {j, 0, Min[n/i, k]}]]];
    a[n_] := With[{k = 5}, (b[n, n, k] - b[n, n, k - 1])[[2]]];
    a /@ Range[5, 50] (* Jean-François Alcover, Dec 13 2020, after Alois P. Heinz *)

Formula

a(n) ~ log(6) * exp(Pi*sqrt(5*n)/3) / (2 * Pi * 5^(1/4) * n^(1/4)). - Vaclav Kotesovec, Oct 25 2018