cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320439 Number of factorizations of n into factors > 1 where each factor's prime indices are relatively prime. Number of factorizations of n using elements of A289509.

Original entry on oeis.org

1, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 1, 5, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 2, 0, 7, 1, 1, 1, 3, 0, 1, 0, 4, 0, 1, 0, 2, 1, 1, 0, 7, 0, 1, 1, 2, 0, 1, 1, 4, 0, 1, 0, 5, 0, 1, 0, 11, 0, 2, 0, 2, 1, 2, 0, 6, 0, 1, 1, 2, 1, 1, 0, 7, 0, 1, 0, 3, 1, 1, 0
Offset: 1

Views

Author

Gus Wiseman, Jan 08 2019

Keywords

Comments

Also the number of multiset partitions of the multiset of prime indices of n using multisets each of which is relatively prime.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Two or more numbers are relatively prime if they have no common divisor > 1. A single number is not considered to be relatively prime unless it is equal to 1.

Examples

			The a(72) = 6 factorizations are (2*2*18), (2*6*6), (2*36), (4*18), (6*12), (72).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    facsrp[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#,d]&)/@Select[facsrp[n/d],Min@@#>=d&],{d,Select[Rest[Divisors[n]],GCD@@primeMS[#]==1&]}]];
    Table[Length[facsrp[n]],{n,100}]
  • PARI
    A320439(n, m=n) = if(1==n, 1, my(s=0); fordiv(n, d, if((d<=m)&&(1==gcd(apply(x->primepi(x), factor(d)[, 1]))), s += A320439(n/d, d))); (s)); \\ Antti Karttunen, Dec 06 2021