A320449 Number of antichains of sets whose multiset union is an integer partition of n.
1, 1, 2, 4, 6, 9, 18, 24, 39, 58, 92, 131, 206
Offset: 0
Examples
The a(1) = 1 through a(7) = 24 antichains: {{1}} {{2}} {{3}} {{4}} {{5}} {{1},{1}} {{1,2}} {{1,3}} {{1,4}} {{1},{2}} {{1},{3}} {{2,3}} {{1},{1},{1}} {{2},{2}} {{1},{4}} {{1},{1},{2}} {{2},{3}} {{1},{1},{1},{1}} {{1},{1},{3}} {{1},{2},{2}} {{1},{1},{1},{2}} {{1},{1},{1},{1},{1}} . {{6}} {{7}} {{1,5}} {{1,6}} {{2,4}} {{2,5}} {{1,2,3}} {{3,4}} {{1},{5}} {{1,2,4}} {{2},{4}} {{1},{6}} {{3},{3}} {{2},{5}} {{1},{2,3}} {{3},{4}} {{2},{1,3}} {{1},{2,4}} {{3},{1,2}} {{2},{1,4}} {{1},{1},{4}} {{4},{1,2}} {{1,2},{1,2}} {{1},{1},{5}} {{1},{2},{3}} {{1,2},{1,3}} {{2},{2},{2}} {{1},{2},{4}} {{1},{1},{1},{3}} {{1},{3},{3}} {{1},{1},{2},{2}} {{2},{2},{3}} {{1},{1},{1},{1},{2}} {{1},{1},{2,3}} {{1},{1},{1},{1},{1},{1}} {{1},{1},{1},{4}} {{1},{1},{2},{3}} {{1},{2},{2},{2}} {{1},{1},{1},{1},{3}} {{1},{1},{1},{2},{2}} {{1},{1},{1},{1},{1},{2}} {{1},{1},{1},{1},{1},{1},{1}}
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; submultisetQ[M_,N_]:=Or[Length[M]==0,MatchQ[{Sort[List@@M],Sort[List@@N]},{{x_,Z___},{_,x_,W___}}/;submultisetQ[{Z},{W}]]]; antiQ[s_]:=Select[Tuples[s,2],And[UnsameQ@@#,submultisetQ@@#]&]=={}; Table[Length[Select[Join@@mps/@IntegerPartitions[n],And[And@@UnsameQ@@@#,antiQ[#]]&]],{n,10}]