A320451 Number of multiset partitions of uniform integer partitions of n in which all parts have the same length.
1, 1, 3, 5, 8, 7, 19, 11, 24, 26, 38, 28, 85, 46, 89, 99, 146, 110, 246, 163, 326, 305, 416, 376, 816, 591, 903, 971, 1450, 1295, 2517, 1916, 3045, 3141, 4042, 4117, 7073, 5736, 8131, 9026, 12658, 11514, 19459, 16230, 24638, 27129, 33747, 32279, 55778, 45761, 71946
Offset: 0
Keywords
Examples
The a(9) = 26 multiset partitions: {{9}} {{1,8}} {{2,7}} {{3,6}} {{4,5}} {{1,2,6}} {{1,3,5}} {{1},{8}} {{2,3,4}} {{2},{7}} {{3,3,3}} {{3},{6}} {{4},{5}} {{1},{2},{6}} {{1},{3},{5}} {{2},{3},{4}} {{3},{3},{3}} {{1,1,1,2,2,2}} {{1,1,1},{2,2,2}} {{1,1,2},{1,2,2}} {{1,1},{1,2},{2,2}} {{1,2},{1,2},{1,2}} {{1,1,1,1,1,1,1,1,1}} {{1,1,1},{1,1,1},{1,1,1}} {{1},{1},{1},{2},{2},{2}} {{1},{1},{1},{1},{1},{1},{1},{1},{1}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..150
- A. David Christopher and M. Davamani Christober, Relatively Prime Uniform Partitions, Gen. Math. Notes, Vol. 13, No. 2, December, 2012, pp. 1-12.
Crossrefs
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; Table[Length[Select[Join@@mps/@IntegerPartitions[n],And[SameQ@@Length/@Split[Sort[Join@@#]],SameQ@@Length/@#]&]],{n,10}]
Extensions
Terms a(11) and beyond from Andrew Howroyd, Feb 04 2022
Comments