A320459 MM-numbers of labeled multigraphs spanning an initial interval of positive integers.
1, 13, 169, 377, 611, 1363, 1937, 2021, 2117, 2197, 4901, 7943, 10933, 16211, 17719, 25181, 26273, 27521, 28561, 28717, 39527, 44603, 56173, 58609, 61393, 63713, 64061, 83291, 86903, 91031, 91039, 94987, 99499, 103259, 141401, 142129, 143663, 146653, 147533
Offset: 1
Keywords
Examples
The sequence of terms together with their multiset multisystems begins: 1: {} 13: {{1,2}} 169: {{1,2},{1,2}} 377: {{1,2},{1,3}} 611: {{1,2},{2,3}} 1363: {{1,3},{2,3}} 1937: {{1,2},{3,4}} 2021: {{1,4},{2,3}} 2117: {{1,3},{2,4}} 2197: {{1,2},{1,2},{1,2}} 4901: {{1,2},{1,2},{1,3}} 7943: {{1,2},{1,2},{2,3}} 10933: {{1,2},{1,3},{1,3}} 16211: {{1,2},{1,3},{1,4}} 17719: {{1,2},{1,3},{2,3}} 25181: {{1,2},{1,2},{3,4}} 26273: {{1,2},{1,4},{2,3}} 27521: {{1,2},{1,3},{2,4}} 28561: {{1,2},{1,2},{1,2},{1,2}} 28717: {{1,2},{2,3},{2,3}} 39527: {{1,3},{1,3},{2,3}} 44603: {{1,2},{2,3},{2,4}}
Links
- Eric Weisstein's World of Mathematics, Simple Graph
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; normQ[sys_]:=Or[Length[sys]==0,Union@@sys==Range[Max@@Max@@sys]]; Select[Range[100000],And[normQ[primeMS/@primeMS[#]],And@@(And[SquareFreeQ[#],Length[primeMS[#]]==2]&/@primeMS[#])]&]
Comments