A320512 Total number of nodes summed over all self-avoiding planar walks starting at (0,0), ending at (n,0), remaining in the first quadrant and using steps (0,1), (1,0), (1,1), (-1,1), and (1,-1) such that (0,1) is never used directly before or after (1,0) or (1,1).
1, 5, 31, 258, 2702, 33821, 492978, 8198218, 153136209, 3173544162, 72241986729, 1791612993205, 48074653669593, 1387590910289915, 42863756641047136, 1410904918289665343, 49296029555617568097, 1822020250023113834772, 71023629427964322798782
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..402
Crossrefs
Cf. A317985.
Programs
-
Maple
b:= proc(x, y, i) option remember; (l-> `if`(min(x, y)<0, 0, `if`(max(x, y)=0, [1$2], add(`if`({i, j} in {{1, 2}, {3, 5}, {4, 5}}, 0, (p-> p+[0, p[1]])(b(x-l[j][1], y-l[j][2], j))), j=1..5))))([[-1, 1], [1, -1], [1, 1], [1, 0], [0, 1]]) end: a:= n-> b(n, 0$2)[2]: seq(a(n), n=0..20);
-
Mathematica
b[x_, y_, i_] := b[x, y, i] = With[{l = {{-1, 1}, {1, -1}, {1, 1}, {1, 0}, {0, 1}}}, If[Min[x, y] < 0, {0, 0}, If[Max[x, y] == 0, {1, 1}, Sum[If[ MemberQ[{{1, 2}, {3, 5}, {4, 5}}, Sort@{i, j}], {0, 0}, Function[p, p + {0, p[[1]]}][b[x - l[[j]][[1]], y - l[[j]][[2]], j]]], {j, 5}]]]]; a[n_] := b[n, 0, 0][[2]]; a /@ Range[0, 20] (* Jean-François Alcover, May 14 2020, after Maple *)
Formula
a(n) ~ c * n! * 2^n * n^(7/4), where c = 0.1758027947... - Vaclav Kotesovec, May 14 2020