A320532 MM-numbers of labeled hypergraphs with multiset edges and no singletons spanning an initial interval of positive integers.
1, 7, 13, 19, 37, 53, 61, 89, 91, 113, 131, 133, 151, 161, 223, 247, 251, 259, 281, 299, 311, 329, 359, 371, 377, 427, 437, 463, 481, 503, 593, 611, 623, 659, 667, 689, 703, 719, 721, 791, 793, 827, 851, 863, 893, 917, 923, 953, 1007, 1057, 1069, 1073, 1157
Offset: 1
Keywords
Examples
The sequence of terms together with their multiset multisystems begins: 1: {} 7: {{1,1}} 13: {{1,2}} 19: {{1,1,1}} 37: {{1,1,2}} 53: {{1,1,1,1}} 61: {{1,2,2}} 89: {{1,1,1,2}} 91: {{1,1},{1,2}} 113: {{1,2,3}} 131: {{1,1,1,1,1}} 133: {{1,1},{1,1,1}} 151: {{1,1,2,2}} 161: {{1,1},{2,2}} 223: {{1,1,1,1,2}} 247: {{1,2},{1,1,1}} 251: {{1,2,2,2}} 259: {{1,1},{1,1,2}} 281: {{1,1,2,3}} 299: {{1,2},{2,2}} 311: {{1,1,1,1,1,1}} 329: {{1,1},{2,3}} 359: {{1,1,1,2,2}} 371: {{1,1},{1,1,1,1}}
Links
- Wikipedia, Hypergraph
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; normQ[sys_]:=Or[Length[sys]==0,Union@@sys==Range[Max@@Max@@sys]]; Select[Range[1000],And[SquareFreeQ[#],normQ[primeMS/@primeMS[#]],And@@(And[PrimeOmega[#]>1]&/@primeMS[#])]&]
Comments