A068209 Primes p of the form 3k - 1 such that there exist nontrivial solutions (x other than 0 or -1 modulo p) to the congruence (x+1)^p - x^p == 1 (mod p^2).
59, 83, 179, 227, 419, 443, 701, 857, 887, 911, 929, 971, 977, 1091, 1109, 1193, 1217, 1223, 1259, 1283, 1289, 1439, 1487, 1493, 1613, 1637, 1811, 1847, 1901, 1997, 2003, 2087, 2243, 2423, 2477, 2579, 2591, 2729, 2777, 2969, 3089, 3137, 3191, 3203, 3251
Offset: 1
Links
- Jianing Song, Table of n, a(n) for n = 1..1397 (all terms up to 2*10^5; first 74 terms from Robert G. Wilson v)
- K. S. Brown, On the Density of Some Exceptional Primes
Programs
-
PARI
isA068209(n) = if(isprime(n) && n%3==2, for(a=1, n-2, if(Mod(a+1,n^2)^n - Mod(a,n^2)^n==1, return(1)))); return(0) \\ Jianing Song, Nov 08 2022
Extensions
Definition corrected by Mike Oakes, Feb 12 2009
Comments