cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320545 Number of partitions of n into parts of exactly three sorts which are introduced in ascending order such that sorts of adjacent parts are different.

Original entry on oeis.org

1, 4, 12, 31, 73, 165, 357, 760, 1582, 3270, 6678, 13589, 27482, 55468, 111588, 224259, 449908, 902106, 1807173, 3619162, 7244557, 14499238, 29011551, 58044194, 116115782, 232275383, 464607730, 929306306, 1858730674, 3717648658, 7435541392, 14871467784
Offset: 3

Views

Author

Alois P. Heinz, Oct 15 2018

Keywords

Crossrefs

Column k=3 of A262495.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0 or i=1, k^(n-1),
          b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k)))
        end:
    A:= (n, k)-> `if`(n=0, 1, `if`(k<2, k, k*b(n$2, k-1))):
    a:= n-> (k-> add(A(n, k-i)*(-1)^i/(i!*(k-i)!), i=0..k))(3):
    seq(a(n), n=3..40);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0 || i == 1, k^(n - 1), b[n, i - 1, k] + If[i > n, 0, k b[n - i, i, k]]];
    A[n_, k_] := If[n == 0, 1, If[k < 2, k, k b[n, n, k - 1]]];
    a[n_] := With[{k = 3}, Sum[A[n, k - i] (-1)^i/(i! (k - i)!), {i, 0, k}]];
    a /@ Range[3, 40] (* Jean-François Alcover, Dec 08 2020, after Alois P. Heinz *)

Formula

a(n) ~ 2^(n-2) / QPochhammer[1/2]. - Vaclav Kotesovec, Oct 25 2018