A320553 Number of set partitions of [n] such that for each block b the smallest integer interval containing b has at most three elements and for at least one block c the smallest integer interval containing c has exactly three elements.
2, 5, 12, 29, 66, 145, 315, 676, 1436, 3031, 6367, 13323, 27798, 57873, 120281, 249657, 517663, 1072520, 2220724, 4595938, 9508022, 19664296, 40659943, 84057614, 173750589, 359110196, 742150185, 1533651213, 3169118648, 6548358736, 13530454573, 27956404705
Offset: 3
Examples
a(4) = 5: 123|4, 13|24, 13|2|4, 1|234, 1|24|3.
Links
- Alois P. Heinz, Table of n, a(n) for n = 3..1000
Programs
-
Maple
b:= proc(n, m, l) option remember; `if`(n=0, 1, add(b(n-1, max(m, j), [subsop(1=NULL, l)[], `if`(j<=m, 0, j)]), j={l[], m+1} minus {0})) end: A:= (n, k)-> `if`(n=0, 1, `if`(k<2, k, b(n, 0, [0$(k-1)]))): a:= n-> (k-> A(n, k) -`if`(k=0, 0, A(n, k-1)))(3): seq(a(n), n=3..35);
-
Mathematica
b[n_, m_, l_List] := b[n, m, l] = If[n == 0, 1, Sum[b[n - 1, Max[m, j], Append[ReplacePart[l, 1 -> Nothing], If[j <= m, 0, j]]], {j, Append[l, m + 1]~Complement~{0}}]]; A[n_, k_] := If[n == 0, 1, If[k < 2, k, b[n, 0, Array[0 &, k - 1]]]]; a[n_] := With[{k = 3}, A[n, k] - If[k == 0, 0, A[n, k - 1]]]; a /@ Range[3, 35] (* Jean-François Alcover, Dec 08 2020, after Alois P. Heinz *)