A320554 Number of set partitions of [n] such that for each block b the smallest integer interval containing b has at most four elements and for at least one block c the smallest integer interval containing c has exactly four elements.
5, 17, 45, 121, 336, 901, 2347, 6014, 15314, 38766, 97531, 244054, 608339, 1511919, 3748379, 9273353, 22901665, 56477538, 139114445, 342325451, 841676972, 2067997764, 5078117000, 12463618356, 30577931115, 74993361731, 183870516407, 450708620604, 1104563863868
Offset: 4
Examples
a(5) = 17: 1234|5, 124|35, 124|3|5, 134|25, 134|2|5, 13|245, 13|25|4, 14|235, 14|23|5, 1|2345, 1|235|4, 14|25|3, 14|2|35, 14|2|3|5, 1|245|3, 1|25|34, 1|25|3|4.
Links
- Alois P. Heinz, Table of n, a(n) for n = 4..1000
Programs
-
Maple
b:= proc(n, m, l) option remember; `if`(n=0, 1, add(b(n-1, max(m, j), [subsop(1=NULL, l)[], `if`(j<=m, 0, j)]), j={l[], m+1} minus {0})) end: A:= (n, k)-> `if`(n=0, 1, `if`(k<2, k, b(n, 0, [0$(k-1)]))): a:= n-> (k-> A(n, k) -`if`(k=0, 0, A(n, k-1)))(4): seq(a(n), n=4..35);
-
Mathematica
b[n_, m_, l_List] := b[n, m, l] = If[n == 0, 1, Sum[b[n - 1, Max[m, j], Append[ReplacePart[l, 1 -> Nothing], If[j <= m, 0, j]]], {j, Append[l, m + 1]~Complement~{0}}]]; A[n_, k_] := If[n == 0, 1, If[k < 2, k, b[n, 0, Array[0 &, k - 1]]]]; a[n_] := With[{k = 4}, A[n, k] - If[k == 0, 0, A[n, k - 1]]]; a /@ Range[4, 35] (* Jean-François Alcover, Dec 08 2020, after Alois P. Heinz *)