cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320554 Number of set partitions of [n] such that for each block b the smallest integer interval containing b has at most four elements and for at least one block c the smallest integer interval containing c has exactly four elements.

Original entry on oeis.org

5, 17, 45, 121, 336, 901, 2347, 6014, 15314, 38766, 97531, 244054, 608339, 1511919, 3748379, 9273353, 22901665, 56477538, 139114445, 342325451, 841676972, 2067997764, 5078117000, 12463618356, 30577931115, 74993361731, 183870516407, 450708620604, 1104563863868
Offset: 4

Views

Author

Alois P. Heinz, Oct 15 2018

Keywords

Examples

			a(5) = 17: 1234|5, 124|35, 124|3|5, 134|25, 134|2|5, 13|245, 13|25|4, 14|235, 14|23|5, 1|2345, 1|235|4, 14|25|3, 14|2|35, 14|2|3|5, 1|245|3, 1|25|34, 1|25|3|4.
		

Crossrefs

Column k=4 of A276727.

Programs

  • Maple
    b:= proc(n, m, l) option remember; `if`(n=0, 1,
          add(b(n-1, max(m, j), [subsop(1=NULL, l)[],
          `if`(j<=m, 0, j)]), j={l[], m+1} minus {0}))
        end:
    A:= (n, k)-> `if`(n=0, 1, `if`(k<2, k, b(n, 0, [0$(k-1)]))):
    a:= n-> (k-> A(n, k) -`if`(k=0, 0, A(n, k-1)))(4):
    seq(a(n), n=4..35);
  • Mathematica
    b[n_, m_, l_List] := b[n, m, l] = If[n == 0, 1, Sum[b[n - 1, Max[m, j], Append[ReplacePart[l, 1 -> Nothing], If[j <= m, 0, j]]], {j, Append[l, m + 1]~Complement~{0}}]];
    A[n_, k_] := If[n == 0, 1, If[k < 2, k, b[n, 0, Array[0 &, k - 1]]]];
    a[n_] := With[{k = 4}, A[n, k] - If[k == 0, 0, A[n, k - 1]]];
    a /@ Range[4, 35] (* Jean-François Alcover, Dec 08 2020, after Alois P. Heinz *)

Formula

G.f.: -(-x^8 -3*x^7 +x^6 +7*x^5 +5*x^4) / (x^12 +5*x^11 +7*x^10 -x^9 -13*x^8 -19*x^7 -14*x^6 -6*x^5 +x^4 +2*x^2 +2*x-1).
a(n) = A276720(n) - A129847(n).