cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A276727 Number T(n,k) of set partitions of [n] where k is minimal such that for each block b the smallest integer interval containing b has at most k elements; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 4, 5, 5, 0, 1, 7, 12, 17, 15, 0, 1, 12, 29, 45, 64, 52, 0, 1, 20, 66, 121, 201, 265, 203, 0, 1, 33, 145, 336, 585, 966, 1197, 877, 0, 1, 54, 315, 901, 1741, 3172, 4971, 5852, 4140, 0, 1, 88, 676, 2347, 5375, 10100, 18223, 27267, 30751, 21147
Offset: 0

Views

Author

Alois P. Heinz, Sep 16 2016

Keywords

Examples

			T(4,1) = 1: 1|2|3|4.
T(4,2) = 4: 12|34, 12|3|4, 1|23|4, 1|2|34.
T(4,3) = 5: 123|4, 13|24, 13|2|4, 1|234, 1|24|3.
T(4,4) = 5: 1234, 124|3, 134|2, 14|23, 14|2|3.
T(5,4) = 17: 1234|5, 124|35, 124|3|5, 134|25, 134|2|5, 13|245, 13|25|4, 14|235, 14|23|5, 1|2345, 1|235|4, 14|25|3, 14|2|35, 14|2|3|5, 1|245|3, 1|25|34, 1|25|3|4.
Triangle T(n,k) begins:
  1;
  0, 1;
  0, 1,  1;
  0, 1,  2,   2;
  0, 1,  4,   5,   5;
  0, 1,  7,  12,  17,  15;
  0, 1, 12,  29,  45,  64,  52;
  0, 1, 20,  66, 121, 201, 265,  203;
  0, 1, 33, 145, 336, 585, 966, 1197, 877;
  ...
		

Crossrefs

Row sums give A000110.
Main diagonal gives A000110(n-1) for n>0.
T(2n,n) gives A276728.

Programs

  • Maple
    b:= proc(n, m, l) option remember; `if`(n=0, 1,
          add(b(n-1, max(m, j), [subsop(1=NULL, l)[],
          `if`(j<=m, 0, j)]), j={l[], m+1} minus {0}))
        end:
    A:= (n, k)-> `if`(n=0, 1, `if`(k<2, k, b(n, 0, [0$(k-1)]))):
    T:= (n, k)-> A(n, k) -`if`(k=0, 0, A(n, k-1)):
    seq(seq(T(n, k), k=0..n), n=0..12);
  • Mathematica
    b[n_, m_, l_List] := b[n, m, l] = If[n == 0, 1, Sum[b[n - 1, Max[m, j], Append[ReplacePart[l, 1 -> Nothing], If[j <= m, 0, j]]], {j, Append[l, m + 1] ~Complement~ {0}}]]; A[n_, k_] := If[n == 0, 1, If[k < 2, k, b[n, 0, Array[0&, k - 1]]]]; T [n_, k_] := A[n, k] - If[k == 0, 0, A[n, k - 1]]; Table[T[n, k], {n, 0, 12}, { k, 0, n}] // Flatten (* Jean-François Alcover, Feb 04 2017, translated from Maple *)

Formula

T(n,k) = A276719(n,k) - A276719(n,k-1) for k>0, T(n,0) = A000007(n).

A320618 Number of ordered set partitions of [n] where k = five is minimal such that for each block b the smallest integer interval containing b has at most k elements.

Original entry on oeis.org

75, 870, 8760, 90084, 998560, 12043772, 155970678, 2155709610, 31695391776, 494515357842, 8168550752022, 142500961444392, 2619097176333672, 50601139406075592, 1025475335759015016, 21756722754354930024, 482359980950031673440, 11156266866807100122120
Offset: 5

Views

Author

Alois P. Heinz, Oct 17 2018

Keywords

Crossrefs

Column k=5 of A276891.
Cf. A320555.
Showing 1-2 of 2 results.