A320580 Numbers k such that for any positive integers x,y coprime to k, x^x == y (mod k) iff y^y == x (mod k).
1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 32, 36, 40, 42, 48, 60, 72, 80, 84, 96, 120, 126, 144, 156, 160, 168, 180, 240, 252, 288, 312, 336, 360, 420, 468, 480, 504, 624, 672, 720, 780, 840, 936, 1008, 1092, 1248, 1260, 1440, 1560, 1680, 1872, 2016, 2184, 2340, 2520, 3120, 3276, 3360, 3744, 4368, 4680, 5040, 5460, 6240, 6552, 8736, 9360, 10080, 10920, 13104, 16380, 18720, 21840, 26208, 32760, 43680, 65520, 131040
Offset: 1
Examples
3 is not a term because 2^2 == 1 (mod 3) but 1^1 !== 2 (mod 3). 10 is not a term because 13^13 == 3 (mod 10) but 3^3 !== 13 (mod 10). 20 is a term because 1^1 == 1 (mod 20), 3^3 == 7 (mod 20), 7^7 == 3 (mod 20), 9^9 == 9 (mod 20), 11^11 == 11 (mod 20), 13^13 == 13 (mod 20), 17^17 == 17 (mod 20), 19^19 == 19 (mod 20), and A002322(20) = 4 divides 20.
Programs
-
PARI
for(i=1, 144, my(j=divisors(131040)[i]); if(j%lcm(znstar(j)[2])==0, print1(j, ", ")))
Comments