cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320582 Number T(n,k) of permutations p of [n] such that |{ j : |p(j)-j| = 1 }| = k; triangle T(n,k), n >= 0, 0 <= k <= n, read by rows.

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 2, 0, 4, 0, 5, 6, 10, 2, 1, 21, 36, 42, 12, 9, 0, 117, 226, 219, 104, 47, 6, 1, 792, 1568, 1472, 800, 328, 64, 16, 0, 6205, 12360, 11596, 6652, 2658, 688, 148, 12, 1, 55005, 109760, 103600, 60840, 24770, 7120, 1560, 200, 25, 0, 543597, 1085560, 1030649, 614420, 255830, 77732, 17750, 2876, 365, 20, 1
Offset: 0

Views

Author

Alois P. Heinz, Jan 23 2019

Keywords

Examples

			T(4,0) = 5: 1234, 1432, 3214, 3412, 4231.
T(4,1) = 6: 2431, 3241, 3421, 4132, 4213, 4312.
T(4,2) = 10: 1243, 1324, 1342, 1423, 2134, 2314, 2413, 3124, 3142, 4321.
T(4,3) = 2: 2341, 4123.
T(4,4) = 1: 2143.
Triangle T(n,k) begins:
      1;
      1,      0;
      1,      0,      1;
      2,      0,      4,     0;
      5,      6,     10,     2,     1;
     21,     36,     42,    12,     9,    0;
    117,    226,    219,   104,    47,    6,    1;
    792,   1568,   1472,   800,   328,   64,   16,   0;
   6205,  12360,  11596,  6652,  2658,  688,  148,  12,  1;
  55005, 109760, 103600, 60840, 24770, 7120, 1560, 200, 25,  0;
  ...
		

Crossrefs

Column k=0 gives A078480.
Row sums give A000142.
Main diagonal gives A059841.

Programs

  • Maple
    b:= proc(s) option remember; expand((n-> `if`(n=0, 1, add(
         `if`(abs(n-j)=1, x, 1)*b(s minus {j}), j=s)))(nops(s)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b({$1..n})):
    seq(T(n), n=0..12);
  • Mathematica
    b[s_] := b[s] = Expand[With[{n = Length[s]}, If[n==0, 1, Sum[
         If[Abs[n-j]==1, x, 1]*b[s~Complement~{j}], {j, s}]]]];
    T[n_] := PadRight[CoefficientList[b[Range[n]], x], n+1];
    T /@ Range[0, 12] // Flatten (* Jean-François Alcover, Feb 09 2021, after Alois P. Heinz *)

Formula

Sum_{k=1..n} k * T(n,k) = A052582(n-1) for n > 0.
Sum_{k=0..n} (k+1) * T(n,k) = A082033(n-1) for n > 0.