A320582 Number T(n,k) of permutations p of [n] such that |{ j : |p(j)-j| = 1 }| = k; triangle T(n,k), n >= 0, 0 <= k <= n, read by rows.
1, 1, 0, 1, 0, 1, 2, 0, 4, 0, 5, 6, 10, 2, 1, 21, 36, 42, 12, 9, 0, 117, 226, 219, 104, 47, 6, 1, 792, 1568, 1472, 800, 328, 64, 16, 0, 6205, 12360, 11596, 6652, 2658, 688, 148, 12, 1, 55005, 109760, 103600, 60840, 24770, 7120, 1560, 200, 25, 0, 543597, 1085560, 1030649, 614420, 255830, 77732, 17750, 2876, 365, 20, 1
Offset: 0
Examples
T(4,0) = 5: 1234, 1432, 3214, 3412, 4231. T(4,1) = 6: 2431, 3241, 3421, 4132, 4213, 4312. T(4,2) = 10: 1243, 1324, 1342, 1423, 2134, 2314, 2413, 3124, 3142, 4321. T(4,3) = 2: 2341, 4123. T(4,4) = 1: 2143. Triangle T(n,k) begins: 1; 1, 0; 1, 0, 1; 2, 0, 4, 0; 5, 6, 10, 2, 1; 21, 36, 42, 12, 9, 0; 117, 226, 219, 104, 47, 6, 1; 792, 1568, 1472, 800, 328, 64, 16, 0; 6205, 12360, 11596, 6652, 2658, 688, 148, 12, 1; 55005, 109760, 103600, 60840, 24770, 7120, 1560, 200, 25, 0; ...
Links
- Alois P. Heinz, Rows n = 0..24, flattened
Crossrefs
Programs
-
Maple
b:= proc(s) option remember; expand((n-> `if`(n=0, 1, add( `if`(abs(n-j)=1, x, 1)*b(s minus {j}), j=s)))(nops(s))) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b({$1..n})): seq(T(n), n=0..12);
-
Mathematica
b[s_] := b[s] = Expand[With[{n = Length[s]}, If[n==0, 1, Sum[ If[Abs[n-j]==1, x, 1]*b[s~Complement~{j}], {j, s}]]]]; T[n_] := PadRight[CoefficientList[b[Range[n]], x], n+1]; T /@ Range[0, 12] // Flatten (* Jean-François Alcover, Feb 09 2021, after Alois P. Heinz *)