cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A276891 Number T(n,k) of ordered set partitions of [n] where k is minimal such that for each block b the smallest integer interval containing b has at most k elements; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 6, 4, 3, 0, 24, 20, 18, 13, 0, 120, 114, 118, 114, 75, 0, 720, 750, 878, 924, 870, 541, 0, 5040, 5616, 7224, 8152, 8760, 7818, 4683, 0, 40320, 47304, 65514, 79682, 90084, 94560, 81078, 47293, 0, 362880, 443400, 652446, 845874, 998560, 1135776, 1148016, 954474, 545835
Offset: 0

Views

Author

Alois P. Heinz, Sep 21 2016

Keywords

Examples

			Triangle T(n,k) begins:
  1;
  0,     1;
  0,     2,     1;
  0,     6,     4,     3;
  0,    24,    20,    18,    13;
  0,   120,   114,   118,   114,    75;
  0,   720,   750,   878,   924,   870,   541;
  0,  5040,  5616,  7224,  8152,  8760,  7818,  4683;
  0, 40320, 47304, 65514, 79682, 90084, 94560, 81078, 47293;
  ...
		

Crossrefs

Columns k=0-10 give: A000007, A000142 (for n>0), A320615, A320616, A320617, A320618, A320619, A320620, A320621, A320622, A320623.
Row sums give: A000670.
Main diagonal gives A000670(n-1) for n>0.
T(2n,n) gives A276892.

Programs

  • Maple
    b:= proc(n, m, l) option remember; `if`(n=0, m!,
          add(b(n-1, max(m, j), [subsop(1=NULL, l)[],
          `if`(j<=m, 0, j)]), j={l[], m+1} minus {0}))
        end:
    A:= (n, k)-> `if`(k=0, `if`(n=0, 1, 0),
                 `if`(k=1, n!, b(n, 0, [0$(k-1)]))):
    T:= (n, k)-> A(n, k) -`if`(k=0, 0, A(n, k-1)):
    seq(seq(T(n, k), k=0..n), n=0..10);
  • Mathematica
    b[n_, m_, l_List] := b[n, m, l] = If[n == 0, m!, Sum[b[n - 1, Max[m, j], Append[ReplacePart[l, 1 -> Nothing], If[j <= m, 0, j]]], {j, Append[l, m + 1] ~Complement~ {0}}]]; A[n_, k_] := If[k == 0, If[n == 0, 1, 0], If[k == 1, n!, b[n, 0, Array[0 &, k - 1]]]]; T [n_, k_] := A[n, k] - If[k == 0, 0, A[n, k - 1]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 04 2017, translated from Maple *)

Formula

T(n,k) = A276890(n,k) - A276890(n,k-1) for k>0, T(n,0) = A000007(n).

A320556 Number of set partitions of [n] such that for each block b the smallest integer interval containing b has at most six elements and for at least one block c the smallest integer interval containing c has exactly six elements.

Original entry on oeis.org

52, 265, 966, 3172, 10100, 32918, 111138, 373888, 1238236, 4034221, 12991481, 41567855, 132719006, 423099220, 1346053178, 4271656023, 13520858094, 42696919677, 134582517515, 423599583268, 1331701708711, 4182193622677, 13121508724973, 41131777789545
Offset: 6

Views

Author

Alois P. Heinz, Oct 15 2018

Keywords

Crossrefs

Column k=6 of A276727.

Programs

  • Maple
    b:= proc(n, m, l) option remember; `if`(n=0, 1,
          add(b(n-1, max(m, j), [subsop(1=NULL, l)[],
          `if`(j<=m, 0, j)]), j={l[], m+1} minus {0}))
        end:
    A:= (n, k)-> `if`(n=0, 1, `if`(k<2, k, b(n, 0, [0$(k-1)]))):
    a:= n-> (k-> A(n, k) -`if`(k=0, 0, A(n, k-1)))(6):
    seq(a(n), n=6..50);

Formula

a(n) = A276722(n) - A276721(n).
Showing 1-2 of 2 results.