A320627 a(n) = A006134(A038754(n) - 1)/3^n.
1, 1, 1, 13, 217, 12938197, 913083596083, 3836387399699939518675459471, 18744974860247264575032720770000376335095039, 25741458812593689971179132474269180614331431944325835714919500509967358371226305360396760987
Offset: 0
Keywords
Examples
a(1) = (binomial(0, 0) + binomial(2, 1))/3 = 3/3 = 1. a(2) = (binomial(0, 0) + binomial(2, 1) + binomial(4, 2))/9 = 9/9 = 1. a(3) = (binomial(0, 0) + binomial(2, 1) + binomial(4, 2) + binomial(6, 3) + binomial(8, 4) + binomial(10, 5))/27 = 351/27 = 13.
Programs
-
Mathematica
Array[Sum[Binomial[2 k, k], {k, 0, #}] &[((1 + Boole[OddQ@ #]) 3^((# - Boole[OddQ@ #])/2)) - 1]/3^# &, 9] (* Michael De Vlieger, Oct 22 2018 *)
-
PARI
A006134(n) = sum(k=0,n,binomial(2*k,k)) a(n) = if(n%2, A006134(2*3^((n-1)/2)-1)/3^n, A006134(3^(n/2)-1)/3^n)
Comments