A320625 a(n) = A006134((3^n-1)/2)/3^n.
1, 1, 11, 520783, 1777232132705889910073, 1989655738014873996462170980393276816167557169374094238588991602837393
Offset: 0
Keywords
Examples
a(1) = (binomial(0, 0) + binomial(2, 1))/3 = 3/3 = 1. a(2) = (binomial(0, 0) + binomial(2, 1) + binomial(4, 2) + binomial(6, 3) + binomial(8, 4))/9 = 99/9 = 11.
Programs
-
GAP
List([0..5],n->Sum([0..(3^n-1)/2],k->Binomial(2*k,k))/3^n); # Muniru A Asiru, Oct 23 2018
-
Maple
a:=n->add(binomial(2*k,k),k=0..(3^n-1)/2)/3^n: seq(a(n),n=0..5); # Muniru A Asiru, Oct 23 2018
-
Mathematica
Array[Sum[Binomial[2 k, k], {k, 0, #}] &[(3^# - 1)/2]/3^# &, 5] (* Michael De Vlieger, Oct 22 2018 *)
-
PARI
A006134(n) = sum(k=0,n,binomial(2*k,k)) a(n) = A006134((3^n-1)/2)/3^n
Comments