cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A320625 a(n) = A006134((3^n-1)/2)/3^n.

Original entry on oeis.org

1, 1, 11, 520783, 1777232132705889910073, 1989655738014873996462170980393276816167557169374094238588991602837393
Offset: 0

Views

Author

Jianing Song, Oct 18 2018

Keywords

Comments

a(n) is always an integer.
a(6) has 215 digits and a(7) has 654 digits.
For primes p we have A006134((p-1)/2) == Legendre(p, 3) (mod p). For composite n equal to a power of 3, n is also divisible by A006134((n-1)/2). Odd composite n not a power of 3 such that n divides A006134((n-1)/2) are n = 99, 1539, ... What's the next? Are there similar values of n not divisible by 3?
Conjecture: for n > 0, a(n) == 1 (mod 3) for odd n, a(n) == 2 (mod 3) for even n.

Examples

			a(1) = (binomial(0, 0) + binomial(2, 1))/3 = 3/3 = 1.
a(2) = (binomial(0, 0) + binomial(2, 1) + binomial(4, 2) + binomial(6, 3) + binomial(8, 4))/9 = 99/9 = 11.
		

Crossrefs

Programs

  • GAP
    List([0..5],n->Sum([0..(3^n-1)/2],k->Binomial(2*k,k))/3^n); # Muniru A Asiru, Oct 23 2018
  • Maple
    a:=n->add(binomial(2*k,k),k=0..(3^n-1)/2)/3^n: seq(a(n),n=0..5); # Muniru A Asiru, Oct 23 2018
  • Mathematica
    Array[Sum[Binomial[2 k, k], {k, 0, #}] &[(3^# - 1)/2]/3^# &, 5] (* Michael De Vlieger, Oct 22 2018 *)
  • PARI
    A006134(n) = sum(k=0,n,binomial(2*k,k))
    a(n) = A006134((3^n-1)/2)/3^n
    
Showing 1-1 of 1 results.