A320637 Regular triangle read by rows: T(n,k) = Lcm_{m=k..n} d(n,k) where d(n,k) is the denominator of the unsigned Stirling1(n,k)*k!/n! for 0 <= k <= n.
1, 1, 1, 1, 2, 1, 1, 6, 1, 1, 1, 12, 12, 2, 1, 1, 60, 12, 4, 1, 1, 1, 60, 180, 8, 6, 2, 1, 1, 420, 180, 120, 6, 6, 1, 1, 1, 840, 5040, 240, 240, 6, 4, 2, 1, 1, 2520, 5040, 15120, 240, 144, 4, 12, 1, 1, 1, 2520, 25200, 30240, 15120, 288, 240, 24, 3, 2, 1
Offset: 0
Examples
Triangle begins: 1, 1, 1, 1, 2, 1, 1, 6, 1, 1, 1, 12, 12, 2, 1, 1, 60, 12, 4, 1, 1, 1, 60, 180, 8, 6, 2, 1, 1, 420, 180, 120, 6, 6, 1, 1, ...
Links
- Abdelmalek Bedhouche and Bakir Farhi, On some products taken over the prime numbers, arXiv:2207.07957 [math.NT], 2022.
- Bakir Farhi, On the derivatives of the integer-valued polynomials, arXiv:1810.07560 [math.NT], 2018. See Table 1 c(n,k) p. 15.
Programs
-
PARI
d(n,k) = denominator(abs(stirling(n,k,1))*k!/n!); T(n,k) = my(x = 1); for (m=k, n, x = lcm(x, d(m,k))); x;
Extensions
Corrected by Michel Marcus, Jul 19 2022