A320644 Number of chiral pairs of color patterns (set partitions) in a cycle of length n using exactly 4 colors (subsets).
0, 0, 0, 0, 0, 2, 17, 84, 388, 1586, 6405, 24927, 96404, 368641, 1407515, 5357974, 20403120, 77699323, 296229485, 1130614092, 4321324766, 16539645539, 63397442097, 243352167691, 935420468092, 3600493932070, 13876442107403, 53546144395718, 206864753332164, 800067806813323, 3097590602034137, 12004772596768984, 46568647645538594, 180809553280920680
Offset: 1
Examples
For a(6)=2, the chiral pairs are AABACD-AABCAD and AABCBD-AABCDC.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
- E. N. Gilbert and J. Riordan, Symmetry types of periodic sequences, Illinois J. Math., 5 (1961), 657-665.
Programs
-
Mathematica
Ach[n_, k_] := Ach[n, k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2,k] + Ach[n-2,k-1] + Ach[n-2,k-2]] (* A304972 *) Adnk[d_,n_,k_] := Adnk[d,n,k] = If[n>0 && k>0, Adnk[d,n-1,k]k + DivisorSum[d,Adnk[d,n-1,k-#] &], Boole[n==0 && k==0]] k=4; Table[DivisorSum[n,EulerPhi[#]Adnk[#,n/#,k]&]/(2n) - Ach[n,k]/2,{n,40}]
Formula
a(n) = -Ach(n,k)/2 + (1/2n)*Sum_{d|n} phi(d)*A(d,n/d,k), where k=4 is number of colors or sets, Ach(n,k) = [n>=0 & n<2 & n==k] + [n>1]*(k*Ach(n-2,k)+Ach(n-2,k-1)+Ach(n-2,k-2)), and A(d,n,k) = [n==0 & k==0] + [n>0 & k>0]*(k*A(d,n-1,k) + Sum_{j|d} A(d,n-1,k-j)).
Comments