cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320649 Expansion of 1/(1 - Sum_{k>=1} k^2*x^k/(1 - x^k)).

Original entry on oeis.org

1, 1, 6, 21, 82, 294, 1116, 4103, 15326, 56833, 211454, 785441, 2920058, 10851016, 40331874, 149892024, 557098510, 2070493098, 7695228038, 28600012305, 106294901116, 395055313662, 1468262641770, 5456942875386, 20281270503914, 75377349437075, 280147395367820
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 18 2018

Keywords

Comments

Invert transform of A001157.

Crossrefs

Programs

  • Maple
    a:=series(1/(1-add(k^2*x^k/(1-x^k),k=1..100)),x=0,27): seq(coeff(a,x,n),n=0..26); # Paolo P. Lava, Apr 02 2019
  • Mathematica
    nmax = 26; CoefficientList[Series[1/(1 - Sum[k^2 x^k/(1 - x^k), {k, 1, nmax}]), {x, 0, nmax}], x]
    nmax = 26; CoefficientList[Series[1/(1 + x D[Log[Product[(1 - x^k)^k, {k, 1, nmax}]], x]), {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = Sum[DivisorSigma[2, k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 26}]

Formula

G.f.: 1/(1 + x * (d/dx) log(Product_{k>=1} (1 - x^k)^k)).
a(0) = 1; a(n) = Sum_{k=1..n} sigma_2(k)*a(n-k).