A320655 Number of factorizations of n into semiprimes. Number of multiset partitions of the multiset of prime factors of n, into pairs.
1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 2, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 2, 1, 1, 1, 1, 0, 2, 1, 0, 1, 1, 1, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0
Offset: 1
Keywords
Examples
The a(900) = 5 factorizations into semiprimes: 900 = (4*9*25) 900 = (4*15*15) 900 = (6*6*25) 900 = (6*10*15) 900 = (9*10*10) The a(900) = 5 multiset partitions into pairs: {{1,1},{2,2},{3,3}} {{1,1},{2,3},{2,3}} {{1,2},{1,2},{3,3}} {{1,2},{1,3},{2,3}} {{2,2},{1,3},{1,3}}
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Crossrefs
Programs
-
Mathematica
semfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[semfacs[n/d],Min@@#>=d&]],{d,Select[Rest[Divisors[n]],PrimeOmega[#]==2&]}]]; Table[Length[semfacs[n]],{n,100}]
-
PARI
A320655(n, m=n) = if(1==n, 1, my(s=0); fordiv(n, d, if((2==bigomega(d)&&(d<=m)), s += A320655(n/d, d))); (s)); \\ Antti Karttunen, Dec 06 2020
Extensions
Data section extended up to 105 terms by Antti Karttunen, Dec 06 2020
Comments