cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320655 Number of factorizations of n into semiprimes. Number of multiset partitions of the multiset of prime factors of n, into pairs.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 2, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 2, 1, 1, 1, 1, 0, 2, 1, 0, 1, 1, 1, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0
Offset: 1

Views

Author

Gus Wiseman, Oct 18 2018

Keywords

Comments

The characteristic function of nonzero terms is A065043. - R. J. Mathar, Jan 18 2021

Examples

			The a(900) = 5 factorizations into semiprimes:
  900 = (4*9*25)
  900 = (4*15*15)
  900 = (6*6*25)
  900 = (6*10*15)
  900 = (9*10*10)
The a(900) = 5 multiset partitions into pairs:
  {{1,1},{2,2},{3,3}}
  {{1,1},{2,3},{2,3}}
  {{1,2},{1,2},{3,3}}
  {{1,2},{1,3},{2,3}}
  {{2,2},{1,3},{1,3}}
		

Crossrefs

Programs

  • Mathematica
    semfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[semfacs[n/d],Min@@#>=d&]],{d,Select[Rest[Divisors[n]],PrimeOmega[#]==2&]}]];
    Table[Length[semfacs[n]],{n,100}]
  • PARI
    A320655(n, m=n) = if(1==n, 1, my(s=0); fordiv(n, d, if((2==bigomega(d)&&(d<=m)), s += A320655(n/d, d))); (s)); \\ Antti Karttunen, Dec 06 2020

Extensions

Data section extended up to 105 terms by Antti Karttunen, Dec 06 2020