cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320656 Number of factorizations of n into squarefree semiprimes. Number of multiset partitions of the multiset of prime factors of n, into strict pairs.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0
Offset: 1

Views

Author

Gus Wiseman, Oct 18 2018

Keywords

Examples

			The a(4620) = 6 factorizations into squarefree semiprimes:
  4620 = (6*10*77)
  4620 = (6*14*55)
  4620 = (6*22*35)
  4620 = (10*14*33)
  4620 = (10*21*22)
  4620 = (14*15*22)
The a(4620) = 6 multiset partitions into strict pairs:
  {{1,2},{1,3},{4,5}}
  {{1,2},{1,4},{3,5}}
  {{1,2},{1,5},{3,4}}
  {{1,3},{1,4},{2,5}}
  {{1,3},{2,4},{1,5}}
  {{1,4},{2,3},{1,5}}
The a(69300) = 10 factorizations into squarefree semiprimes:
  69300 = (6*6*35*55)
  69300 = (6*10*15*77)
  69300 = (6*10*21*55)
  69300 = (6*10*33*35)
  69300 = (6*14*15*55)
  69300 = (6*15*22*35)
  69300 = (10*10*21*33)
  69300 = (10*14*15*33)
  69300 = (10*15*21*22)
  69300 = (14*15*15*22)
The a(69300) = 10 multiset partitions into strict pairs:
  {{1,2},{1,2},{3,4},{3,5}}
  {{1,2},{1,3},{2,3},{4,5}}
  {{1,2},{1,3},{2,4},{3,5}}
  {{1,2},{1,3},{2,5},{3,4}}
  {{1,2},{1,4},{2,3},{3,5}}
  {{1,2},{2,3},{1,5},{3,4}}
  {{1,3},{1,3},{2,4},{2,5}}
  {{1,3},{1,4},{2,3},{2,5}}
  {{1,3},{2,3},{2,4},{1,5}}
  {{1,4},{2,3},{2,3},{1,5}}.
The a(210) = 3 factorizations into squarefree semiprimes: 210 = (6*35) = (10*21) = (14*15). - _Antti Karttunen_, Nov 02 2022
		

Crossrefs

Programs

  • Mathematica
    bepfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[bepfacs[n/d],Min@@#>=d&]],{d,Select[Rest[Divisors[n]],SquareFreeQ[#]&&PrimeOmega[#]==2&]}]];
    Table[Length[bepfacs[n]],{n,100}]
  • PARI
    A320656(n, m=n) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1)&&(d<=m)&&issquarefree(d)&&2==bigomega(d), s += A320656(n/d, d))); (s)); \\ Antti Karttunen, Nov 02 2022

Formula

a(A002110(n)) = A123023(n). - Antti Karttunen, Nov 02 2022

Extensions

Data section extended up to a(120) and the secondary offset added by Antti Karttunen, Nov 02 2022