A320656 Number of factorizations of n into squarefree semiprimes. Number of multiset partitions of the multiset of prime factors of n, into strict pairs.
1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0
Offset: 1
Keywords
Examples
The a(4620) = 6 factorizations into squarefree semiprimes: 4620 = (6*10*77) 4620 = (6*14*55) 4620 = (6*22*35) 4620 = (10*14*33) 4620 = (10*21*22) 4620 = (14*15*22) The a(4620) = 6 multiset partitions into strict pairs: {{1,2},{1,3},{4,5}} {{1,2},{1,4},{3,5}} {{1,2},{1,5},{3,4}} {{1,3},{1,4},{2,5}} {{1,3},{2,4},{1,5}} {{1,4},{2,3},{1,5}} The a(69300) = 10 factorizations into squarefree semiprimes: 69300 = (6*6*35*55) 69300 = (6*10*15*77) 69300 = (6*10*21*55) 69300 = (6*10*33*35) 69300 = (6*14*15*55) 69300 = (6*15*22*35) 69300 = (10*10*21*33) 69300 = (10*14*15*33) 69300 = (10*15*21*22) 69300 = (14*15*15*22) The a(69300) = 10 multiset partitions into strict pairs: {{1,2},{1,2},{3,4},{3,5}} {{1,2},{1,3},{2,3},{4,5}} {{1,2},{1,3},{2,4},{3,5}} {{1,2},{1,3},{2,5},{3,4}} {{1,2},{1,4},{2,3},{3,5}} {{1,2},{2,3},{1,5},{3,4}} {{1,3},{1,3},{2,4},{2,5}} {{1,3},{1,4},{2,3},{2,5}} {{1,3},{2,3},{2,4},{1,5}} {{1,4},{2,3},{2,3},{1,5}}. The a(210) = 3 factorizations into squarefree semiprimes: 210 = (6*35) = (10*21) = (14*15). - _Antti Karttunen_, Nov 02 2022
Links
Crossrefs
Programs
-
Mathematica
bepfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[bepfacs[n/d],Min@@#>=d&]],{d,Select[Rest[Divisors[n]],SquareFreeQ[#]&&PrimeOmega[#]==2&]}]]; Table[Length[bepfacs[n]],{n,100}]
-
PARI
A320656(n, m=n) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1)&&(d<=m)&&issquarefree(d)&&2==bigomega(d), s += A320656(n/d, d))); (s)); \\ Antti Karttunen, Nov 02 2022
Formula
Extensions
Data section extended up to a(120) and the secondary offset added by Antti Karttunen, Nov 02 2022