A320658 Number of factorizations of A181821(n) into semiprimes. Number of multiset partitions, of a multiset whose multiplicities are the prime indices of n, into pairs.
1, 0, 1, 1, 0, 0, 1, 0, 2, 1, 0, 2, 1, 0, 0, 3, 0, 0, 1, 0, 2, 1, 0, 0, 2, 0, 5, 2, 1, 3, 0, 0, 0, 1, 0, 6, 1, 0, 2, 4, 0, 0, 1, 0, 0, 1, 0, 9, 3, 0, 0, 2, 1, 0, 2, 0, 2, 0, 0, 0, 1, 1, 6, 15, 0, 3, 0, 0, 0, 4, 1, 0, 0, 0, 6, 2, 0, 0, 1, 0, 17, 1, 0, 7, 2, 0
Offset: 1
Keywords
Examples
The a(84) = 7 factorizations into semiprimes: 84 = (4*4*9*35) 84 = (4*4*15*21) 84 = (4*6*6*35) 84 = (4*6*10*21) 84 = (4*6*14*15) 84 = (4*9*10*14) 84 = (6*6*10*14) The a(84) = 7 multiset partitions into pairs: {{1,1},{1,1},{2,2},{3,4}} {{1,1},{1,1},{2,3},{2,4}} {{1,1},{1,2},{1,2},{3,4}} {{1,1},{1,2},{1,3},{2,4}} {{1,1},{1,2},{1,4},{2,3}} {{1,1},{2,2},{1,3},{1,4}} {{1,2},{1,2},{1,3},{1,4}}
Crossrefs
Programs
-
Mathematica
nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]]; bepfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[bepfacs[n/d],Min@@#>=d&]],{d,Select[Rest[Divisors[n]],PrimeOmega[#]==2&]}]]; Table[Length[bepfacs[Times@@Prime/@nrmptn[n]]],{n,100}]
Comments