cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320663 Number of non-isomorphic multiset partitions of weight n using singletons or pairs.

Original entry on oeis.org

1, 1, 4, 7, 21, 40, 106, 216, 534, 1139, 2715, 5962, 14012, 31420, 73484, 167617, 392714, 908600, 2140429, 5015655, 11905145, 28228533, 67590229, 162067916, 391695348, 949359190, 2316618809, 5673557284, 13979155798, 34583650498, 86034613145, 214948212879
Offset: 0

Views

Author

Gus Wiseman, Oct 18 2018

Keywords

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(4) = 21 multiset partitions:
  {{1}}  {{1,1}}    {{1},{1,1}}    {{1,1},{1,1}}
         {{1,2}}    {{1},{2,2}}    {{1,1},{2,2}}
         {{1},{1}}  {{1},{2,3}}    {{1,2},{1,2}}
         {{1},{2}}  {{2},{1,2}}    {{1,2},{2,2}}
                    {{1},{1},{1}}  {{1,2},{3,3}}
                    {{1},{2},{2}}  {{1,2},{3,4}}
                    {{1},{2},{3}}  {{1,3},{2,3}}
                                   {{1},{1},{1,1}}
                                   {{1},{1},{2,2}}
                                   {{1},{1},{2,3}}
                                   {{1},{2},{1,2}}
                                   {{1},{2},{2,2}}
                                   {{1},{2},{3,3}}
                                   {{1},{2},{3,4}}
                                   {{1},{3},{2,3}}
                                   {{2},{2},{1,2}}
                                   {{1},{1},{1},{1}}
                                   {{1},{1},{2},{2}}
                                   {{1},{2},{2},{2}}
                                   {{1},{2},{3},{3}}
                                   {{1},{2},{3},{4}}
		

Crossrefs

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    gs(v) = {sum(i=2, #v, sum(j=1, i-1, my(g=gcd(v[i],v[j])); g*x^(2*v[i]*v[j]/g))) + sum(i=1, #v, my(r=v[i]); (1 + (1+r)%2)*x^r + ((1+r)\2)*x^(2*r))}
    a(n)={my(s=0); forpart(p=n, s+=permcount(p)*EulerT(Vec(gs(p) + O(x*x^n), -n))[n]); s/n!} \\ Andrew Howroyd, Oct 26 2018

Extensions

Terms a(11) and beyond from Andrew Howroyd, Oct 26 2018