A320663 Number of non-isomorphic multiset partitions of weight n using singletons or pairs.
1, 1, 4, 7, 21, 40, 106, 216, 534, 1139, 2715, 5962, 14012, 31420, 73484, 167617, 392714, 908600, 2140429, 5015655, 11905145, 28228533, 67590229, 162067916, 391695348, 949359190, 2316618809, 5673557284, 13979155798, 34583650498, 86034613145, 214948212879
Offset: 0
Keywords
Examples
Non-isomorphic representatives of the a(1) = 1 through a(4) = 21 multiset partitions: {{1}} {{1,1}} {{1},{1,1}} {{1,1},{1,1}} {{1,2}} {{1},{2,2}} {{1,1},{2,2}} {{1},{1}} {{1},{2,3}} {{1,2},{1,2}} {{1},{2}} {{2},{1,2}} {{1,2},{2,2}} {{1},{1},{1}} {{1,2},{3,3}} {{1},{2},{2}} {{1,2},{3,4}} {{1},{2},{3}} {{1,3},{2,3}} {{1},{1},{1,1}} {{1},{1},{2,2}} {{1},{1},{2,3}} {{1},{2},{1,2}} {{1},{2},{2,2}} {{1},{2},{3,3}} {{1},{2},{3,4}} {{1},{3},{2,3}} {{2},{2},{1,2}} {{1},{1},{1},{1}} {{1},{1},{2},{2}} {{1},{2},{2},{2}} {{1},{2},{3},{3}} {{1},{2},{3},{4}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..50
Crossrefs
Programs
-
PARI
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)} permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m} gs(v) = {sum(i=2, #v, sum(j=1, i-1, my(g=gcd(v[i],v[j])); g*x^(2*v[i]*v[j]/g))) + sum(i=1, #v, my(r=v[i]); (1 + (1+r)%2)*x^r + ((1+r)\2)*x^(2*r))} a(n)={my(s=0); forpart(p=n, s+=permcount(p)*EulerT(Vec(gs(p) + O(x*x^n), -n))[n]); s/n!} \\ Andrew Howroyd, Oct 26 2018
Extensions
Terms a(11) and beyond from Andrew Howroyd, Oct 26 2018