cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320664 Number of non-isomorphic multiset partitions of weight n with all parts of odd size.

Original entry on oeis.org

1, 1, 2, 6, 12, 30, 82, 198, 533, 1459, 4039, 11634, 34095, 102520, 316456, 995709, 3215552, 10591412, 35633438, 122499429, 428988392, 1532929060, 5579867442, 20677066725, 78027003260, 299413756170, 1168536196157, 4635420192861, 18678567555721, 76451691937279, 317625507668759
Offset: 0

Views

Author

Gus Wiseman, Oct 18 2018

Keywords

Comments

Also the number of non-isomorphic multiset partitions of weight n in which each vertex appears an odd number of times.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(4) = 12 multiset partitions with all parts of odd size:
  {{1}}  {{1},{1}}  {{1,1,1}}      {{1},{1,1,1}}
         {{1},{2}}  {{1,2,2}}      {{1},{1,2,2}}
                    {{1,2,3}}      {{1},{2,2,2}}
                    {{1},{1},{1}}  {{1},{2,3,3}}
                    {{1},{2},{2}}  {{1},{2,3,4}}
                    {{1},{2},{3}}  {{2},{1,2,2}}
                                   {{3},{1,2,3}}
                                   {{1},{1},{1},{1}}
                                   {{1},{1},{2},{2}}
                                   {{1},{2},{2},{2}}
                                   {{1},{2},{3},{3}}
                                   {{1},{2},{3},{4}}
		

Crossrefs

Programs

  • PARI
    \\ See links in A339645 for combinatorial species functions.
    seq(n)={my(A=symGroupSeries(n)); NumUnlabeledObjsSeq(sCartProd(sExp(A), sExp((A-subst(A,x,-x))/2)))} \\ Andrew Howroyd, Jan 17 2023
    
  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    J(q, t, k, y)={1/prod(j=1, #q, my(s=q[j], g=gcd(s,t)); (1 + O(x*x^k) - y^(s/g)*x^(s*t/g))^g)}
    K(q, t, k) = Vec(J(q,t,k,1)-J(q,t,k,-1), -k)/2
    a(n)={my(s=0); forpart(q=n, s+=permcount(q)*polcoef(exp(x*Ser(sum(t=1, n, K(q, t, n)/t))), n)); s/n!} \\ Andrew Howroyd, Jan 17 2023

Extensions

Terms a(11) and beyond from Andrew Howroyd, Jan 16 2023