A320731 Number of possible states when placing n tokens of 2 alternating types on 3 piles.
1, 3, 9, 24, 60, 141, 328, 738, 1647, 3618, 7893, 17055, 36619, 78144, 165888, 350619, 738012, 1548279, 3237611, 6752439, 14046525, 29157612, 60396996, 124885167
Offset: 0
Examples
With alternating symbols A and B on three piles (starting with A), the following states emerge after placing 3 symbols in all 3^3 possible ways: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 A A B B B A A A A A A B B B A__ AA_ A_A AB_ AB_ ABA A_B AAB A_B BA_ BA_ BAA AA_ _A_ _AA 16 17 18 19 20 21 22 23 24 25 26 27 A A A A A A A B B B AAB _AB _AB B_A BAA B_A ABA _BA _BA A_A _AA __A 3 pairs of states (numbered (6,22), (8,16) and (12,20)) are identical, all others are different, hence a(3)=24.
Crossrefs
For 2 token types on 2 piles, see A320452.
Programs
-
Python
def fill(patterns, state_in, ply_nr, n_plies, n_players, n_stacks): if ply_nr>=n_plies: patterns.add(tuple(state_in)) else: symbol=chr(ord('A')+ply_nr%n_players) for st in range(n_stacks): state_out=list(state_in) state_out[st]+=symbol fill(patterns, state_out, ply_nr+1, n_plies, n_players, n_stacks) def A320731(n): n_plies, n_players, n_stacks = n, 2, 3 patterns=set() state=[""]*n_stacks fill(patterns, state, 0, n_plies, n_players, n_stacks) return len(patterns)
Comments