A320734 Number of partitions of n with three sorts of part 1 which are introduced in ascending order.
1, 1, 3, 7, 19, 52, 151, 442, 1314, 3921, 11737, 35171, 105464, 316318, 948863, 2846461, 8539221, 25617443, 76852054, 230555794, 691666924, 2075000173, 6224999772, 18674998357, 56024993883, 168074980137, 504224938548, 1512674813304, 4538024437036
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..2097
Crossrefs
Column k=3 of A292745.
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0 or i<2, add( Stirling2(n, j), j=0..3), add(b(n-i*j, i-1), j=0..n/i)) end: a:= n-> b(n$2): seq(a(n), n=0..40);
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0 || i < 2, Sum[StirlingS2[n, j], {j, 0, 3}], Sum[b[n - i j, i - 1], {j, 0, n/i}]]; a[n_] := b[n, n]; a /@ Range[0, 40] (* Jean-François Alcover, Dec 07 2020, after Alois P. Heinz *)