A320735 Number of partitions of n with four sorts of part 1 which are introduced in ascending order.
1, 1, 3, 7, 20, 62, 217, 803, 3092, 12128, 48047, 191266, 763249, 3049383, 12190360, 48747140, 194960047, 779783252, 3119019290, 12475849884, 49902945245, 199610872683, 798441674561, 3193763066392, 12775045002551, 51100165484967, 204400632890492
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1663
Crossrefs
Column k=4 of A292745.
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0 or i<2, add( Stirling2(n, j), j=0..4), add(b(n-i*j, i-1), j=0..n/i)) end: a:= n-> b(n$2): seq(a(n), n=0..40);
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0 || i < 2, Sum[StirlingS2[n, j], {j, 0, 4}], Sum[b[n - i j, i - 1], {j, 0, n/i}]]; a[n_] := b[n, n]; a /@ Range[0, 40] (* Jean-François Alcover, Dec 07 2020, after Alois P. Heinz *)