A320736 Number of partitions of n with five sorts of part 1 which are introduced in ascending order.
1, 1, 3, 7, 20, 63, 232, 944, 4158, 19236, 91794, 446311, 2194569, 10863768, 53995350, 269013587, 1342192961, 6702368648, 33486112079, 167353481065, 836536395240, 4181989400979, 20907870188551, 104533122311131, 522646929294281, 2613178606952285
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1433
Crossrefs
Column k=5 of A292745.
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0 or i<2, add( Stirling2(n, j), j=0..5), add(b(n-i*j, i-1), j=0..n/i)) end: a:= n-> b(n$2): seq(a(n), n=0..40);
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0 || i < 2, Sum[StirlingS2[n, j], {j, 0, 5}], Sum[b[n - i j, i - 1], {j, 0, n/i}]]; a[n_] := b[n, n]; a /@ Range[0, 40] (* Jean-François Alcover, Dec 07 2020, after Alois P. Heinz *)