A320737 Number of partitions of n with six sorts of part 1 which are introduced in ascending order.
1, 1, 3, 7, 20, 63, 233, 965, 4425, 21904, 114910, 628754, 3544272, 20393306, 118986963, 700768255, 4152987416, 24714368292, 147480695339, 881688073414, 5277421580515, 31613933962624, 189481916086717, 1136086826214117, 6813308511956936, 40867019987219945
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1288
Crossrefs
Column k=6 of A292745.
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0 or i<2, add( Stirling2(n, j), j=0..6), add(b(n-i*j, i-1), j=0..n/i)) end: a:= n-> b(n$2): seq(a(n), n=0..40);
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0 || i < 2, Sum[StirlingS2[n, j], {j, 0, 6}], Sum[b[n - i j, i - 1], {j, 0, n/i}]]; a[n_] := b[n, n]; a /@ Range[0, 40] (* Jean-François Alcover, Dec 07 2020, after Alois P. Heinz *)