A320738 Number of partitions of n with seven sorts of part 1 which are introduced in ascending order.
1, 1, 3, 7, 20, 63, 233, 966, 4453, 22367, 120819, 693233, 4178068, 26179581, 169020426, 1115994109, 7491323062, 50893512269, 348746702822, 2404544709055, 16651752622351, 115675136440751, 805342277995251, 5615683405472021, 39202038270665250, 273878789880840798
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1187
Crossrefs
Column k=7 of A292745.
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0 or i<2, add( Stirling2(n, j), j=0..7), add(b(n-i*j, i-1), j=0..n/i)) end: a:= n-> b(n$2): seq(a(n), n=0..40);
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0 || i < 2, Sum[StirlingS2[n, j], {j, 0, 7}], Sum[b[n - i j, i - 1], {j, 0, n/i}]]; a[n_] := b[n, n]; a /@ Range[0, 40] (* Jean-François Alcover, Dec 07 2020, after Alois P. Heinz *)