A320739 Number of partitions of n with eight sorts of part 1 which are introduced in ascending order.
1, 1, 3, 7, 20, 63, 233, 966, 4454, 22403, 121570, 705150, 4337883, 28091897, 190105229, 1334705996, 9656244012, 71551215515, 540187472767, 4137336876098, 32036946594336, 250131019258467, 1965050543015106, 15509209887539395, 122829846706462146
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1112
Crossrefs
Column k=8 of A292745.
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0 or i<2, add( Stirling2(n, j), j=0..8), add(b(n-i*j, i-1), j=0..n/i)) end: a:= n-> b(n$2): seq(a(n), n=0..40);
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0 || i < 2, Sum[StirlingS2[n, j], {j, 0, 8}], Sum[b[n - i j, i - 1], {j, 0, n/i}]]; a[n_] := b[n, n]; a /@ Range[0, 40] (* Jean-François Alcover, Dec 07 2020, after Alois P. Heinz *)