A320740 Number of partitions of n with nine sorts of part 1 which are introduced in ascending order.
1, 1, 3, 7, 20, 63, 233, 966, 4454, 22404, 121615, 706306, 4360204, 28452601, 195263881, 1402218667, 10482569938, 81153069799, 647261864569, 5292447172261, 44165731426846, 374675276723042, 3220404743013997, 27967105952549269, 244844437773618386
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1053
Crossrefs
Column k=9 of A292745.
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0 or i<2, add( Stirling2(n, j), j=0..9), add(b(n-i*j, i-1), j=0..n/i)) end: a:= n-> b(n$2): seq(a(n), n=0..40);
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0 || i < 2, Sum[StirlingS2[n, j], {j, 0, 9}], Sum[b[n - i j, i - 1], {j, 0, n/i}]]; a[n_] := b[n, n]; a /@ Range[0, 40] (* Jean-François Alcover, Dec 07 2020, after Alois P. Heinz *)