A320741 Number of partitions of n with ten sorts of part 1 which are introduced in ascending order.
1, 1, 3, 7, 20, 63, 233, 966, 4454, 22404, 121616, 706361, 4361910, 28491982, 196018395, 1414922459, 10677120529, 83924901635, 684582037213, 5772723290503, 50123602905429, 446382776341382, 4062023996661972, 37638652689027910, 354017801203414670
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1006
Crossrefs
Column k=10 of A292745.
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0 or i<2, add( Stirling2(n, j), j=0..10), add(b(n-i*j, i-1), j=0..n/i)) end: a:= n-> b(n$2): seq(a(n), n=0..40);
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0 || i < 2, Sum[StirlingS2[n, j], {j, 0, 10}], Sum[b[n - i j, i - 1], {j, 0, n/i}]]; a[n_] := b[n, n]; a /@ Range[0, 40] (* Jean-François Alcover, Dec 07 2020, after Alois P. Heinz *)