A320769 a(n) where a(n)=-a(-n), a(1)=a(2)=a(3)=a(4)=1, and a(n+2)*a(n-2) = a(n+1)*a(n-1) - c(n)*a(n)^2 where c(3*k)=-2, else c(n)=1.
0, 1, 1, 1, 1, 3, 2, -7, -13, -25, 3, -173, -332, 1237, 2149, 12969, -34411, 212159, 729350, -5405899, 2412231, -129451889, 951511591, -6624402137, -19829335448, 484740289833, -2548271136343, 27842908929425, -353158277960887, 5055074341844027
Offset: 0
Keywords
Examples
G.f. = x + x^2 + x^3 + x^4 + 3*x^5 + 2*x^6 - 7*x^7 - 13*x^8 + ...
Links
- C. Kimberling, Strong divisibility sequences and some conjectures, Fib. Quart., 17 (1979), 13-17.
- LMFDB, Elliptic Curve 196.a2 (Cremona label "196a1").
Crossrefs
Cf. A061347.
Programs
-
PARI
{a(n) = my(v); if( n==0, 0, n<0, -a(-n), v = vector(n, k, 1); for( k=5, n, v[k] = (v[k-1] * v[k-3] - v[k-2]^2 * [1, 1, -2] [k%3 + 1]) / v[k-4]); v[n])};
Formula
a(2*n) = a(n)*(c(n-1)*a(n-1)^2*a(n+2) - c(n+1)*a(n+1)^2*a(n-2)) for all n in Z.
c(n) is A061347(n). - Michael Somos, Nov 27 2019
Comments