A320775 a(n) is the least exponent k greater than 1 such that prime(n)^k starts and ends in prime(n).
21, 41, 24, 33, 171, 361, 461, 471, 1281, 1091, 231, 221, 236, 61, 861, 2761, 241, 546, 3261, 1991, 6081, 421, 9541, 5731, 4461, 1621, 21501, 10381, 5051, 1301, 16301, 30051, 18601, 13601, 3171, 8991, 7561, 3201, 33501, 8701, 17351, 5601, 13551, 901, 10301, 871
Offset: 1
Examples
2^21 = 2097152 and 21 is the least exponent; 3^41 = 36472996377170786403 and 41 is the least exponent.
Links
- M. F. Hasler, Table of n, a(n) for n = 1..100
- Carlos Rivera, Puzzle 934. The prime 7499, The Prime Puzzles and Problems Connection.
- Carlos Rivera, Conjecture 81, The Prime Puzzles and Problems Connection.
Programs
-
Maple
f:= proc(n) local p, k,m,q,r; p:= ithprime(n); m:= ilog10(p)+1; q:= numtheory:-order(p,10^m); for k from q+1 by q do r:= p^k; if p = floor(r/10^(ilog10(r)+1-m)) then return k fi; od end proc: f(1):= 21: f(3):= 24: map(f, [$1..50]); # Robert Israel, Dec 12 2018
-
Mathematica
a[p_] := Module[{d=IntegerDigits[p]}, nd=Length[d];k=2; While[IntegerDigits[p^k][[1;;nd]] != d || IntegerDigits[p^k][[-nd;;-1]] != d, k++]; k]; a/@Prime@Range@10 (* Amiram Eldar, Dec 10 2018 *)
-
PARI
isokd(d, dpk) = {for (i=1, #d, if (dpk[i] != d[i], return (0));); return (1);} isok(p, k) = {my(dpk=digits(p^k), d = digits(p)); if (!isokd(d, dpk), return (0)); isokd(Vecrev(d), Vecrev(dpk));} a(n) = {my(k=2, p = prime(n)); while (!isok(p, k), k++); k;} \\ Michel Marcus, Dec 10 2018
-
PARI
apply( {A320775(n, d=logint(n=prime(n), 10)+1, K=if(n>5||n==3,znorder(Mod(n, 10^d)),n+18), f(x)=x\10^(logint(x, 10)+1-d))=forstep(k=1+K,oo,K, n==f(n^k)&&return(k))}, [1..20]) \\ Define A320775 & test it via apply(). - M. F. Hasler, Dec 10 2018
Comments