A320776 Inverse Euler transform of the number of prime factors (with multiplicity) function A001222.
1, 0, 1, 1, 1, 0, -1, -1, 0, 1, 0, -1, -1, -1, 1, 3, 3, -2, -5, -4, 0, 7, 7, 0, -9, -10, 2, 15, 15, -3, -27, -30, 3, 46, 51, 1, -71, -91, -7, 117, 157, 23, -194, -265, -57, 318, 465, 111, -536, -821, -230, 893, 1456, 505, -1485, -2559, -1036, 2433, 4483, 2022
Offset: 0
Keywords
Crossrefs
Programs
-
Maple
# The function EulerInvTransform is defined in A358451. a := EulerInvTransform(n -> ifelse(n=0, 1, NumberTheory:-NumberOfPrimeFactors(n))): seq(a(n), n = 0..59); # Peter Luschny, Nov 21 2022
-
Mathematica
EulerInvTransform[{}]={};EulerInvTransform[seq_]:=Module[{final={}},For[i=1,i<=Length[seq],i++,AppendTo[final,i*seq[[i]]-Sum[final[[d]]*seq[[i-d]],{d,i-1}]]]; Table[Sum[MoebiusMu[i/d]*final[[d]],{d,Divisors[i]}]/i,{i,Length[seq]}]]; EulerInvTransform[Array[PrimeOmega,100]]
Comments