A320779 Inverse Euler transform of the number of divisors function A000005.
1, 1, 0, 0, -1, 1, -1, 0, 1, -1, 0, 1, -1, -1, 2, 1, -2, -2, 2, 3, -4, 0, 3, -3, 3, -2, -2, 2, 1, 7, -15, 0, 17, -11, -1, 0, 9, -4, -18, 26, -10, -10, 24, -17, -15, 21, 27, -42, -37, 69, 43, -113, -11, 149, -98, -24, 67, -57, 24, -53, 213, -243, -193, 704
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..5000
- OEIS Wiki, Euler transform
Crossrefs
Cf. A000005.
Programs
-
Maple
# The function EulerInvTransform is defined in A358451. a := EulerInvTransform(n -> ifelse(n=0, 1, NumberTheory:-SumOfDivisors(n, 0))): seq(a(n), n = 1..64); # Peter Luschny, Nov 21 2022
-
Mathematica
EulerInvTransform[{}]={};EulerInvTransform[seq_]:=Module[{final={}},For[i=1,i<=Length[seq],i++,AppendTo[final,i*seq[[i]]-Sum[final[[d]]*seq[[i-d]],{d,i-1}]]]; Table[Sum[MoebiusMu[i/d]*final[[d]],{d,Divisors[i]}]/i,{i,Length[seq]}]]; EulerInvTransform[Table[DivisorSigma[0,n],{n,100}]]
-
Python
from functools import lru_cache from sympy import mobius, divisors, divisor_count def A320779(n): @lru_cache(maxsize=None) def b(n): return divisor_count(n) @lru_cache(maxsize=None) def c(n): return n*b(n)-sum(c(k)*b(n-k) for k in range(1,n)) return sum(mobius(d)*c(n//d) for d in divisors(n,generator=True))//n # Chai Wah Wu, Jul 15 2024
Comments