cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320779 Inverse Euler transform of the number of divisors function A000005.

Original entry on oeis.org

1, 1, 0, 0, -1, 1, -1, 0, 1, -1, 0, 1, -1, -1, 2, 1, -2, -2, 2, 3, -4, 0, 3, -3, 3, -2, -2, 2, 1, 7, -15, 0, 17, -11, -1, 0, 9, -4, -18, 26, -10, -10, 24, -17, -15, 21, 27, -42, -37, 69, 43, -113, -11, 149, -98, -24, 67, -57, 24, -53, 213, -243, -193, 704
Offset: 1

Views

Author

Gus Wiseman, Oct 22 2018

Keywords

Comments

The Euler transform of a sequence q is the sequence of coefficients of x^n, n > 0, in the expansion of Product_{n > 0} 1/(1 - x^n)^q(n).

Crossrefs

Cf. A000005.

Programs

  • Maple
    # The function EulerInvTransform is defined in A358451.
    a := EulerInvTransform(n -> ifelse(n=0, 1, NumberTheory:-SumOfDivisors(n, 0))):
    seq(a(n), n = 1..64); # Peter Luschny, Nov 21 2022
  • Mathematica
    EulerInvTransform[{}]={};EulerInvTransform[seq_]:=Module[{final={}},For[i=1,i<=Length[seq],i++,AppendTo[final,i*seq[[i]]-Sum[final[[d]]*seq[[i-d]],{d,i-1}]]];
    Table[Sum[MoebiusMu[i/d]*final[[d]],{d,Divisors[i]}]/i,{i,Length[seq]}]];
    EulerInvTransform[Table[DivisorSigma[0,n],{n,100}]]
  • Python
    from functools import lru_cache
    from sympy import mobius, divisors, divisor_count
    def A320779(n):
        @lru_cache(maxsize=None)
        def b(n): return divisor_count(n)
        @lru_cache(maxsize=None)
        def c(n): return n*b(n)-sum(c(k)*b(n-k) for k in range(1,n))
        return sum(mobius(d)*c(n//d) for d in divisors(n,generator=True))//n # Chai Wah Wu, Jul 15 2024