cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320785 Inverse Euler transform of the number of factorizations function A001055.

Original entry on oeis.org

1, 1, 0, 0, 1, -1, 1, -1, 1, 0, -1, 1, -1, 0, 0, 1, 1, -3, 3, -3, 0, 4, -6, 6, -5, 5, -1, -7, 13, -16, 15, -8, -3, 12, -25, 41, -40, 21, 10, -51, 83, -93, 81, -38, -44, 148, -234, 258, -190, 35, 184, -429, 616, -660, 480, -18, -640, 1289, -1714, 1693, -1039, -268
Offset: 0

Views

Author

Gus Wiseman, Oct 22 2018

Keywords

Comments

The Euler transform of a sequence q is the sequence of coefficients of x^n, n > 0, in the expansion of Product_{n > 0} 1/(1 - x^n)^q(n). The constant term 1 is sometimes taken to be the zeroth part of the Euler transform.

Crossrefs

Programs

  • Mathematica
    EulerInvTransform[{}]={};EulerInvTransform[seq_]:=Module[{final={}},For[i=1,i<=Length[seq],i++,AppendTo[final,i*seq[[i]]-Sum[final[[d]]*seq[[i-d]],{d,i-1}]]];
    Table[Sum[MoebiusMu[i/d]*final[[d]],{d,Divisors[i]}]/i,{i,Length[seq]}]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    EulerInvTransform[Table[Length[facs[n]],{n,100}]]