cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320800 Number of non-isomorphic multiset partitions of weight n in which both the multiset union of the parts and the multiset union of the dual parts are aperiodic.

Original entry on oeis.org

1, 1, 1, 5, 14, 78, 157, 881, 2267, 9257, 28397
Offset: 0

Views

Author

Gus Wiseman, Nov 02 2018

Keywords

Comments

The latter condition is equivalent to the parts having relatively prime sizes.
A multiset is aperiodic if its multiplicities are relatively prime.
The dual of a multiset partition has, for each vertex, one part consisting of the indices (or positions) of the parts containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(4) = 14 multiset partitions:
  {{1}}  {{1},{2}}  {{1},{2,2}}    {{1},{2,2,2}}
                    {{1},{2,3}}    {{1},{2,3,3}}
                    {{2},{1,2}}    {{1},{2,3,4}}
                    {{1},{2},{2}}  {{2},{1,2,2}}
                    {{1},{2},{3}}  {{3},{1,2,3}}
                                   {{1},{1},{2,3}}
                                   {{1},{2},{2,2}}
                                   {{1},{2},{3,3}}
                                   {{1},{2},{3,4}}
                                   {{1},{3},{2,3}}
                                   {{2},{2},{1,2}}
                                   {{1},{2},{2},{2}}
                                   {{1},{2},{3},{3}}
                                   {{1},{2},{3},{4}}
		

Crossrefs