A321283 Number of non-isomorphic multiset partitions of weight n in which the part sizes are relatively prime.
1, 1, 2, 7, 21, 84, 214, 895, 2607, 9591, 31134, 119313, 400950, 1574123, 5706112, 22572991, 86933012, 356058243, 1427784135, 6044132304, 25342935667, 110414556330, 481712291885, 2166488898387, 9784077216457, 45369658599779, 211869746691055, 1011161497851296, 4871413403219085
Offset: 0
Keywords
Examples
Non-isomorphic representatives of the a(1) = 1 through a(4) = 21 multiset partitions with relatively prime part-sizes: {{1}} {{1},{1}} {{1},{1,1}} {{1},{1,1,1}} {{1},{2}} {{1},{2,2}} {{1},{1,2,2}} {{1},{2,3}} {{1},{2,2,2}} {{2},{1,2}} {{1},{2,3,3}} {{1},{1},{1}} {{1},{2,3,4}} {{1},{2},{2}} {{2},{1,2,2}} {{1},{2},{3}} {{3},{1,2,3}} {{1},{1},{1,1}} {{1},{1},{2,2}} {{1},{1},{2,3}} {{1},{2},{1,2}} {{1},{2},{2,2}} {{1},{2},{3,3}} {{1},{2},{3,4}} {{1},{3},{2,3}} {{2},{2},{1,2}} {{1},{1},{1},{1}} {{1},{1},{2},{2}} {{1},{2},{2},{2}} {{1},{2},{3},{3}} {{1},{2},{3},{4}} Non-isomorphic representatives of the a(1) = 1 through a(4) = 21 multiset partitions with aperiodic multiset union: {{1}} {{1,2}} {{1,2,2}} {{1,2,2,2}} {{1},{2}} {{1,2,3}} {{1,2,3,3}} {{1},{2,2}} {{1,2,3,4}} {{1},{2,3}} {{1},{2,2,2}} {{2},{1,2}} {{1,2},{2,2}} {{1},{2},{2}} {{1},{2,3,3}} {{1},{2},{3}} {{1,2},{3,3}} {{1},{2,3,4}} {{1,2},{3,4}} {{1,3},{2,3}} {{2},{1,2,2}} {{3},{1,2,3}} {{1},{1},{2,3}} {{1},{2},{2,2}} {{1},{2},{3,3}} {{1},{2},{3,4}} {{1},{3},{2,3}} {{2},{2},{1,2}} {{1},{2},{2},{2}} {{1},{2},{3},{3}} {{1},{2},{3},{4}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..50
Crossrefs
Programs
-
PARI
\\ See links in A339645 for combinatorial species functions. seq(n)={my(A=symGroupSeries(n)); NumUnlabeledObjsSeq(sCartProd(sExp(A), 1 + sum(d=1, n, moebius(d) * (-1 + sExp(O(x*x^n) + sum(i=1, n\d, polcoef(A,i*d)*x^(i*d)))) )))} \\ Andrew Howroyd, Jan 17 2023
-
PARI
\\ faster self contained program. EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)} permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m} K(q, t, k)={EulerT(Vec(sum(j=1, #q, my(g=gcd(t, q[j])); g*x^(q[j]/g)) + O(x*x^k), -k))} a(n)={if(n==0, 1, my(s=0); forpart(q=n, my(u=vector(n, t, K(q, t, n\t))); s+=permcount(q)*polcoef(sum(d=1, n, moebius(d)*exp(sum(t=1, n\d, sum(i=1, n\(t*d), u[t][i*d]*x^(i*d*t))/t, O(x*x^n)) )), n)); s/n!)} \\ Andrew Howroyd, Jan 17 2023
Formula
Extensions
Terms a(11) and beyond from Andrew Howroyd, Jan 17 2023
Comments