A320803 Number of non-isomorphic multiset partitions of weight n in which all parts are aperiodic multisets.
1, 1, 3, 7, 21, 56, 174, 517, 1664, 5383, 18199, 62745, 223390, 813425, 3040181, 11620969, 45446484, 181537904, 740369798, 3079779662, 13059203150, 56406416004, 248027678362, 1109626606188, 5048119061134, 23342088591797, 109648937760252, 523036690273237
Offset: 0
Keywords
Examples
Non-isomorphic representatives of the a(1) = 1 through a(4) = 21 multiset partitions with aperiodic parts: {{1}} {{1,2}} {{1,2,2}} {{1,2,2,2}} {{1},{1}} {{1,2,3}} {{1,2,3,3}} {{1},{2}} {{1},{2,3}} {{1,2,3,4}} {{2},{1,2}} {{1},{1,2,2}} {{1},{1},{1}} {{1,2},{1,2}} {{1},{2},{2}} {{1},{2,3,3}} {{1},{2},{3}} {{1},{2,3,4}} {{1,2},{3,4}} {{1,3},{2,3}} {{2},{1,2,2}} {{3},{1,2,3}} {{1},{1},{2,3}} {{1},{2},{1,2}} {{1},{2},{3,4}} {{1},{3},{2,3}} {{2},{2},{1,2}} {{1},{1},{1},{1}} {{1},{1},{2},{2}} {{1},{2},{2},{2}} {{1},{2},{3},{3}} {{1},{2},{3},{4}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..50
Crossrefs
Programs
-
PARI
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)} permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m} K(q, t, k)={EulerT(Vec(sum(j=1, #q, gcd(t, q[j])*x^lcm(t, q[j])) + O(x*x^k), -k))} a(n)={if(n==0, 1, my(mbt=vector(n, d, moebius(d)), s=0); forpart(q=n, s+=permcount(q)*polcoef(exp(x*Ser(dirmul(mbt, sum(t=1, n, K(q, t, n)/t)))), n)); s/n!)} \\ Andrew Howroyd, Jan 16 2023
Extensions
Terms a(11) and beyond from Andrew Howroyd, Jan 16 2023
Comments