A320816 Number of partitions of n with exactly three sorts of part 1 which are introduced in ascending order.
1, 6, 26, 97, 334, 1095, 3482, 10855, 33405, 101925, 309237, 934691, 2818110, 8482505, 25504000, 76625146, 230101961, 690759226, 2073184749, 6221368879, 18667736528, 56010470158, 168045932624, 504166843427, 1512558622966, 4537792056226, 13613608545770
Offset: 3
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 3..2097
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0 or i<2, add( Stirling2(n, j), j=0..k), add(b(n-i*j, i-1, k), j=0..n/i)) end: a:= n-> (k-> b(n$2, k)-b(n$2, k-1))(3): seq(a(n), n=3..35);
-
Mathematica
b[n_, i_, k_] := b[n, i, k] = If[n == 0 || i < 2, Sum[StirlingS2[n, j], {j, 0, k}], Sum[b[n - i*j, i - 1, k], {j, 0, n/i}]]; a[n_] := With[{k = 3}, b[n, n, k] - b[n, n, k - 1]]; a /@ Range[3, 35] (* Jean-François Alcover, Dec 16 2020, after Alois P. Heinz *)