cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320817 Number of partitions of n with exactly four sorts of part 1 which are introduced in ascending order.

Original entry on oeis.org

1, 10, 66, 361, 1778, 8207, 36310, 156095, 657785, 2733065, 11241497, 45900679, 186420826, 754165809, 3042167236, 12245294090, 49211278321, 197535872510, 792216674789, 3175088068035, 12719020008668, 50932090504830, 203896407951944, 816089798651203
Offset: 4

Views

Author

Alois P. Heinz, Oct 21 2018

Keywords

Crossrefs

Column k=4 of A292746.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0 or i<2, add(
          Stirling2(n, j), j=0..k), add(b(n-i*j, i-1, k), j=0..n/i))
        end:
    a:= n-> (k-> b(n$2, k)-b(n$2, k-1))(4):
    seq(a(n), n=4..35);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0 || i < 2, Sum[StirlingS2[n, j], {j, 0, k}], Sum[b[n - i*j, i - 1, k], {j, 0, n/i}]];
    a[n_] := With[{k = 4}, b[n, n, k] - b[n, n, k-1]];
    a /@ Range[4, 35] (* Jean-François Alcover, Dec 17 2020, after Alois P. Heinz *)

Formula

a(n) = A320735(n) - A320734(n).