A320817 Number of partitions of n with exactly four sorts of part 1 which are introduced in ascending order.
1, 10, 66, 361, 1778, 8207, 36310, 156095, 657785, 2733065, 11241497, 45900679, 186420826, 754165809, 3042167236, 12245294090, 49211278321, 197535872510, 792216674789, 3175088068035, 12719020008668, 50932090504830, 203896407951944, 816089798651203
Offset: 4
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 4..1663
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0 or i<2, add( Stirling2(n, j), j=0..k), add(b(n-i*j, i-1, k), j=0..n/i)) end: a:= n-> (k-> b(n$2, k)-b(n$2, k-1))(4): seq(a(n), n=4..35);
-
Mathematica
b[n_, i_, k_] := b[n, i, k] = If[n == 0 || i < 2, Sum[StirlingS2[n, j], {j, 0, k}], Sum[b[n - i*j, i - 1, k], {j, 0, n/i}]]; a[n_] := With[{k = 4}, b[n, n, k] - b[n, n, k-1]]; a /@ Range[4, 35] (* Jean-François Alcover, Dec 17 2020, after Alois P. Heinz *)