cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320818 Number of partitions of n with exactly five sorts of part 1 which are introduced in ascending order.

Original entry on oeis.org

1, 15, 141, 1066, 7108, 43747, 255045, 1431320, 7814385, 41804990, 220266447, 1147232914, 5922585396, 30367092789, 154877631181, 786633449995, 3982378528296, 20109428513990, 101339359244739, 509871884291730, 2562078441467318, 12861324297841420
Offset: 5

Views

Author

Alois P. Heinz, Oct 21 2018

Keywords

Crossrefs

Column k=5 of A292746.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0 or i<2, add(
          Stirling2(n, j), j=0..k), add(b(n-i*j, i-1, k), j=0..n/i))
        end:
    a:= n-> (k-> b(n$2, k)-b(n$2, k-1))(5):
    seq(a(n), n=5..35);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0 || i < 2, Sum[StirlingS2[n, j], {j, 0, k}], Sum[b[n - i*j, i - 1, k], {j, 0, n/i}]];
    a[n_] := With[{k = 5}, b[n, n, k] - b[n, n, k - 1]];
    a /@ Range[5, 35] (* Jean-François Alcover, Dec 17 2020, after Alois P. Heinz *)

Formula

a(n) = A320736(n) - A320735(n).