cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320826 Expansion of x*(1 - 4*x)^(3/2)/(3*x - 1)^2.

Original entry on oeis.org

0, 1, 0, -3, -14, -51, -168, -521, -1542, -4365, -11740, -29439, -65670, -112273, -28344, 1018689, 6961550, 34606929, 151831044, 623095683, 2453975622, 9402575805, 35339538912, 130994480547, 480676041954, 1750847208621, 6343667488692, 22899720430251, 82466180250590
Offset: 0

Views

Author

Peter Luschny, Oct 22 2018

Keywords

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); [0] cat Coefficients(R!(x*(1-4*x)^(3/2)/(1-3*x)^2)); // G. C. Greubel, Oct 27 2018
  • Maple
    c := n -> (-4)^(n-1)*binomial(3/2, n-1):
    h := n -> hypergeom([2, 1 - n], [7/2 - n], 3/4):
    A320826 := n -> c(n)*h(n): seq(simplify(A320826(n)), n=0..28);
  • Mathematica
    CoefficientList[Series[(x (1 -  4 x)^(3/2))/(3 x - 1)^2, {x, 0, 28}], x]
  • PARI
    x='x+O('x^30); concat([0], Vec(x*(1-4*x)^(3/2)/(1-3*x)^2)) \\ G. C. Greubel, Oct 27 2018
    

Formula

a(n) = c(n)*h(n) where c(n) = Catalan(n)*(3*n*(n + 1))/(2*(2*n-5)*(2*n-3)*(2*n-1)) = (-4)^(n-1)*binomial(3/2, n-1) and h(n) = hypergeom([2, 1 - n], [7/2 - n], 3/4).
A320826(n) = A320825(n) - A320827(n).