A320826 Expansion of x*(1 - 4*x)^(3/2)/(3*x - 1)^2.
0, 1, 0, -3, -14, -51, -168, -521, -1542, -4365, -11740, -29439, -65670, -112273, -28344, 1018689, 6961550, 34606929, 151831044, 623095683, 2453975622, 9402575805, 35339538912, 130994480547, 480676041954, 1750847208621, 6343667488692, 22899720430251, 82466180250590
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Magma
m:=30; R
:=PowerSeriesRing(Rationals(), m); [0] cat Coefficients(R!(x*(1-4*x)^(3/2)/(1-3*x)^2)); // G. C. Greubel, Oct 27 2018 -
Maple
c := n -> (-4)^(n-1)*binomial(3/2, n-1): h := n -> hypergeom([2, 1 - n], [7/2 - n], 3/4): A320826 := n -> c(n)*h(n): seq(simplify(A320826(n)), n=0..28);
-
Mathematica
CoefficientList[Series[(x (1 - 4 x)^(3/2))/(3 x - 1)^2, {x, 0, 28}], x]
-
PARI
x='x+O('x^30); concat([0], Vec(x*(1-4*x)^(3/2)/(1-3*x)^2)) \\ G. C. Greubel, Oct 27 2018