A320950 G.f.: [ Sum_{n>=0} x^n * (1+x)^(n^2) ] * [ Sum_{n>=0} x^n / (1+x)^(n^2) ].
1, 2, 3, 5, 20, 81, 272, 1144, 6147, 30859, 158137, 955988, 5995439, 37307475, 252176301, 1813873656, 13149151909, 99412177075, 793516947530, 6470733413532, 54217400538306, 473499984230701, 4245890615280401, 38948094201082823, 368815668052736968, 3585473523132486254, 35608100771085923165, 362850695679003347638, 3788143752503214124895
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + 2*x + 3*x^2 + 5*x^3 + 20*x^4 + 81*x^5 + 272*x^6 + 1144*x^7 + 6147*x^8 + 30859*x^9 + 158137*x^10 + 955988*x^11 + 5995439*x^12 + ... such that A(x) = P(x) * Q(x) where P(x) = 1 + x*(1+x) + x^2*(1+x)^4 + x^3*(1+x)^9 + x^4*(1+x)^16 + x^5*(1+x)^25 + x^6*(1+x)^36 + x^7*(1+x)^49 + ... + x^n * (1+x)^(n^2) + ... Q(x) = 1 + x/(1+x) + x^2/(1+x)^4 + x^3/(1+x)^9 + x^4/(1+x)^16 + x^5/(1+x)^25 + x^6/(1+x)^36 + x^7/(1+x)^49 + ... + x^n / (1+x)^(n^2) + ... Explicitly, P(x) = 1 + x + 2*x^2 + 5*x^3 + 16*x^4 + 57*x^5 + 231*x^6 + 1023*x^7 + 4926*x^8 + 25483*x^9 + 140601*x^10 + 822422*x^11 + ... + A121689(n)*x^n + ... Q(x) = 1 + x - 2*x^3 + x^4 + 11*x^5 - 19*x^6 - 86*x^7 + 365*x^8 + 581*x^9 - 7336*x^10 + 6061*x^11 + 142946*x^12 - 556061*x^13 + ...
Programs
-
PARI
{a(n) = my(A = sum(m=0, n, x^m*(1+x + x*O(x^n))^(m^2) ) * sum(m=0, n, x^m/(1+x + x*O(x^n))^(m^2) )); polcoeff(A, n)} for(n=0, 30, print1(a(n), ", "))