cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320836 a(n) = Sum (-1)^k where the sum is over all strict multiset partitions of a multiset whose multiplicities are the prime indices of n and k is the number of parts, or strict factorizations of A181821(n).

Original entry on oeis.org

1, -1, -1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, -1, -1, 0, -2, -1, 0, -2, 0, -2, -1, -1, -1, -4, -1, -1, -1, -3, 0, -3, 0, -2, -4, -1, -1, -6, -2, -3, -2, -2, 0, -6, -2, -4, -1, -1, 0, -5, 0, -1, -3, -9, -2, -3, 0, -2, -1, -3, 0, -7, 0
Offset: 1

Views

Author

Gus Wiseman, Oct 21 2018

Keywords

Comments

This multiset (row n of A305936) is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n, k) option remember; `if`(n>k, 0, -1)+`if`(isprime(n), 0,
          -add(`if`(d>k, 0, b(n/d, d-1)), d=divisors(n) minus {1, n}))
        end:
    a:= n-> `if`(n=1, 1, b(((l-> mul(ithprime(i)^l[i], i=1..nops(l)))(
             sort(map(i-> pi(i[1])$i[2], ifactors(n)[2]), `>`)))$2)):
    seq(a(n), n=1..100);  # Alois P. Heinz, Oct 23 2018
  • Mathematica
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Sum[(-1)^Length[m],{m,Select[mps[nrmptn[n]],UnsameQ@@#&]}],{n,30}]

Formula

a(n) = A114592(A181821(n)).

Extensions

More terms from Alois P. Heinz, Oct 21 2018