A320814 Approximation of the 2-adic integer exp(4) up to 2^n.
0, 1, 1, 5, 13, 13, 13, 77, 77, 333, 333, 333, 333, 333, 333, 16717, 16717, 16717, 147789, 409933, 934221, 934221, 934221, 934221, 9322829, 9322829, 9322829, 9322829, 143540557, 411976013, 948846925, 948846925, 948846925, 948846925, 9538781517, 9538781517
Offset: 0
Keywords
Examples
A320840(1) = 1, 4^0/0! = 1, so a(1) = 1. A320840(4) = 3, Sum_{i=0..2} 4^i/i! = 13, so a(4) = 13. A320840(6) = 5, Sum_{i=0..4} 4^i/i! = 103/3 == 13 (mod 64), so a(6) = 13. A320840(8) = 6, Sum_{i=0..5} 4^i/i! = 643/15 == 77 (mod 256), so a(8) = 77. A320840(9) = 7, Sum_{i=0..6} 4^i/i! = 437/9 == 333 (mod 512), so a(9) = 333.
Links
- Jianing Song, Table of n, a(n) for n = 0..2000
- Wikipedia, p-adic number
Programs
-
PARI
a(n) = lift(sum(i=0, n-1-(n>=2), Mod(4^i/i!, 2^n)))
-
PARI
a(n) = lift(exp(4 + O(2^n))); \\ Andrew Howroyd, Nov 05 2018
Comments