cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A320814 Approximation of the 2-adic integer exp(4) up to 2^n.

Original entry on oeis.org

0, 1, 1, 5, 13, 13, 13, 77, 77, 333, 333, 333, 333, 333, 333, 16717, 16717, 16717, 147789, 409933, 934221, 934221, 934221, 934221, 9322829, 9322829, 9322829, 9322829, 143540557, 411976013, 948846925, 948846925, 948846925, 948846925, 9538781517, 9538781517
Offset: 0

Views

Author

Jianing Song, Oct 21 2018

Keywords

Comments

In p-adic field, the exponential function exp(x) is defined as Sum_{k>=0} x^k/k!.
Let |x|A007814(x)%20be%20the%202-adic%20valuation%20of%20x.%20For%20any%202-adic%20number%20x,%20exp(x)%20=%20Sum">2 be the 2-adic metric of x, and v(x, 2) = A007814(x) be the 2-adic valuation of x. For any 2-adic number x, exp(x) = Sum{i>=0} x^i/i! converges implies that lim_{k->+oo} |x^k/k!|2 = 0, that is, lim{k->+oo} v(x^k/k!, 2) = +oo, or lim_{k->+oo} (k*(v(x, 2) - 1) + A000120(i)) = +oo. So v(x, 2) > 1, x is a 2-adic integer divisible by 4. On the other hand, for any integer n and i >= A320840(n), v(4^i/i!, 2) = A092391(i) >= n, so approximation of exp(4) up to 2^n is wholly determined by Sum_{i=0..A320840(n)-1} 4^i/i! (see formula section below), which is well-defined because it has only finitely many terms.
When extended to a function over the metric completion of the p-adic field, exp(x) has radius of convergence p^(-1/(p-1)).
a(n) is the multiplicative inverse of A321689(n) modulo 2^n. - Jianing Song, Nov 17 2018

Examples

			A320840(1) = 1, 4^0/0! = 1, so a(1) = 1.
A320840(4) = 3, Sum_{i=0..2} 4^i/i! = 13, so a(4) = 13.
A320840(6) = 5, Sum_{i=0..4} 4^i/i! = 103/3 == 13 (mod 64), so a(6) = 13.
A320840(8) = 6, Sum_{i=0..5} 4^i/i! = 643/15 == 77 (mod 256), so a(8) = 77.
A320840(9) = 7, Sum_{i=0..6} 4^i/i! = 437/9 == 333 (mod 512), so a(9) = 333.
		

Crossrefs

Programs

  • PARI
    a(n) = lift(sum(i=0, n-1-(n>=2), Mod(4^i/i!, 2^n)))
    
  • PARI
    a(n) = lift(exp(4 + O(2^n))); \\ Andrew Howroyd, Nov 05 2018

Formula

If Sum_{i=0..A320840(n)-1} 4^i/i! = p/q, gcd(p, q) = 1, then a(n) = p*q^(-1) mod 2^n.
a(n) = Sum_{i=0..n-1} A320815(i)*2^i.

A321689 Approximation of the 2-adic integer exp(-4) up to 2^n.

Original entry on oeis.org

0, 1, 1, 5, 5, 5, 5, 5, 133, 389, 901, 1925, 3973, 8069, 8069, 24453, 57221, 57221, 188293, 450437, 974725, 974725, 974725, 974725, 974725, 17751941, 17751941, 84860805, 84860805, 84860805, 621731717, 621731717, 621731717, 4916699013, 4916699013
Offset: 0

Views

Author

Jianing Song, Nov 17 2018

Keywords

Comments

Let 4Q_2 = {x belongs to Q_2 : |x|2 <= 1/4} and 4Q_2 + 1 = {x belongs to Q_2: |x - 1|_2 <= 1/4}. Define exp(x) = Sum{k>=0} x^k/k! and log(x) = -Sum_{k>=0} (1 - x)^k/k over 2-adic field, then exp(x) is a one-to-one mapping from 4Q_2 to 4Q_2 + 1, and log(x) is the inverse of exp(x).
a(n) is the multiplicative inverse of A320814(n) modulo 2^n.

Examples

			A320840(1) = 1, (-4)^0/0! = 1, so a(1) = 1.
A320840(3) = 2, Sum_{i=0..1} (-4)^i/i! = -3 == 5 (mod 8), so a(3) = 5.
A320840(8) = 6, Sum_{i=0..5} (-4)^i/i! = -53/15 == 133 (mod 256), so a(8) = 133.
A320840(9) = 7, Sum_{i=0..6} (-4)^i/i! = 97/45 == 389 (mod 512), so a(9) = 389.
A320840(10) = 9, Sum_{i=0..8} (-4)^i/i! = 167/315 == 901 (mod 1024), so a(10) = 901.
		

Crossrefs

Programs

  • PARI
    a(n) = lift(sum(i=0, n-1-(n>=2), Mod((-4)^i/i!, 2^n)))
    
  • PARI
    a(n) = lift(exp(-4 + O(2^n)));

Formula

If Sum_{i=0..A320840(n)-1} (-4)^i/i! = p/q, gcd(p, q) = 1, then a(n) = p*q^(-1) mod 2^n.
a(n) = Sum_{i=0..n-1} A321692(i)*2^i.
Showing 1-2 of 2 results.