A320874 Lexicographically first 4 X 4 pandiagonal magic square made of consecutive primes.
170693941183817, 170693941183933, 170693941183949, 170693941183981, 170693941183979, 170693941183951, 170693941183847, 170693941183903, 170693941183891, 170693941183859, 170693941184023, 170693941183907, 170693941183993, 170693941183937, 170693941183861, 170693941183889
Offset: 1
Examples
The magic square is [ 170693941183817 170693941183933 170693941183949 170693941183981 ] [ 170693941183979 170693941183951 170693941183847 170693941183903 ] [ 170693941183891 170693941183859 170693941184023 170693941183907 ] [ 170693941183993 170693941183937 170693941183861 170693941183889 ]
References
- Allan W. Johnson, Jr., Journal of Recreational Mathematics, vol. 23:3, 1991, pp. 190-191.
- Clifford A. Pickover, The Zen of Magic Squares, Circles and Stars: An Exhibition of Surprising Structures across Dimensions, Princeton University Press, 2002.
Links
Crossrefs
Cf. A073519 and A320873, A073521, A073522 (3 X 3, 4 X 4 and 5 X 5 consecutive primes), A073523 and A320876 (6 X 6 consecutive primes, pandiagonal magic square).
Cf. A210710: Minimal index of a Stanley antimagic square of order n consisting of distinct primes.
Cf. A073520: Smallest magic sum for an n^2 magic square made of consecutive primes.
Cf. A104157: Smallest of n X n consecutive primes forming a magic square.
Cf. A256234: Magic sums of 4 X 4 pandiagonal magic squares of consecutive primes.
Programs
-
PARI
/* the following transformation operators for matrices, together with transposition, allow the production of all (24 for n=4) variants of a (pandiagonal) magic square */ REV(M)=matconcat(Vecrev(M)) \\ reverse the order of columns of M FLIP(M)=matconcat(Colrev(M)) \\ reverse the order of rows of M ROT(M,k=1)=matconcat([M[,k+1..#M],M[,1..k]]) \\ rotate left by k (default: 1) columns ALL(M)=Set(concat(apply(M->vector(#M,k,ROT(M,k)),[M,M~,REV(M),REV(M~),FLIP(M),FLIP(M~)]))) \\ PARI orders the set according to the (first) columns of the matrices, so one must take the transpose to get them ordered according to elements of the first row. \\ The set of primes is A245721=MagicPrimes(682775764735680,4), cf. A073519.
Comments